
SKILLS

Educating Programmers: A Reflection on
Barriers to Deliberate Practice

Michael James Scott & Gheorghita Ghinea

Information Systems, Computing & Mathematics, Brunel University, UK
Corresponding author:

Michael James Scott, Information Systems, Computing & Mathematics, Brunel University, Uxbridge,

Middlesex UB8 3PH, UK

Email: michael.scott@brunel.ac.uk, Web: www.p-shift.co.uk
Abstract

Programming is a craft that often demands that learners engage in a significantly high level

of individual practice and experimentation in order to acquire basic competencies.

However, practice behaviours can be undermined during the early stages of instruction.

This is often the result of seemingly trivial misconceptions that, when left unchecked, create

cognitive-affective barriers that interact with learners’ self-beliefs, potentially inducing

emotions that inhibit practice. This paper seeks to ascertain how to design a learning

environment that can address this issue. It is proposed that analytical and adaptable

approaches, which might include soft scaffolding, ongoing detailed informative feedback

and a focus on self-enhancement alongside skill development, can help overcome

such barriers.

Keywords: computer science education, computer programming, laboratory instruction,

affective development, feedback, self-beliefs, barriers
1. Introduction

Recently, there has been a drive to revitalise computing education (Gove 2012), in part,

due to criticisms published by the Nesta Trust (Livingstone & Hope 2011) and the Royal

Society (Furber 2012). Unfortunately, few beginners appear to find writing code easy and

enjoyable (Jenkins 2001, 2002), so crafting an effective learning environment is not a trivial

task. Moreover, despite considerable research into programming instruction since the

inception of computer science as an academic discipline, many learners do not acquire the

desired level of competency in their first course (Soloway et al. 1983, McCracken et al. 2001,

Tew & Guzdial 2011). Even those who appear to perform well in early tutorials choose not

to pursue the discipline (Beaubouef & Mason 2005, Carter 2006). Unfortunately, such issues

are so pervasive that the British Computer Society (BCS) declared programming a ‘grand

challenge’ for education research (McGettrick et al. 2005).

An important aspect of this challenge is encouraging learners to engage in frequent

practice. Evidence suggests that levels of effort (Ventura 2005), comfort (Wilson & Shrock

2001) and depth (Simon et al. 2006) predict success in a first programming course. This is
© 2013 The Higher Education Academy Proc. HEA STEM Conf. (2013)

85 doi:10.11120/stem.hea.2013.0005

http://www.p-shift.co.uk

in line with the theory that it can take approximately ten years of deliberate practice to

become an expert (Ericsson et al. 1993, Winslow 1996, Ericsson 2006). Unfortunately,

learners often claim that they have “no time” or have “no motivation” to do so

(Kinnunen & Malmi 2006, p104). So, if deliberate practice is a key element in the

acquisition of programming competencies, how do educators create learning environments

that successfully encourage practice?
2. Cognitive-affective barriers and deliberate practice

In order to appreciate how to facilitate frequent practice, the barriers that prevent it should

be explored. Programming is markedly distinct from other disciplines because proficiency

in other areas does not predict success (Byrne & Lyons 2001, Erdogan et al. 2008) and some

believe that there are no effective aptitude tests (McGettrick et al. 2005, Caspersen et al. 2007),

assuming that aptitudes for programming even exist (Ericsson et al., 1993, Jenkins 2002).

This is because the learning material sometimes demands something very novel of new

learners (Huggard 2004), drawing on skills that, at present, are seldom developed prior to

programming instruction:
© 2013
By means of metaphors and analogies we try to link the new to the old, the

novel to the familiar. Under sufficiently slow and gradual change, it works

reasonably well; in the case of a sharp discontinuity, however, the method

breaks down.

(Dijkstra 1989, p1398)
The sudden sense of ‘radical novelty’ (ibid.) constitutes an unexpected challenge for many

learners, presenting a barrier to learning. This is because those without prior experience

need to adapt to thinking about the intangible and process abstract concepts that are

needed to describe the mechanics behind the code they are writing (Du Boulay 1989).

Barriers can even arise as early as the first stage of instruction. Consider how someone

new to reading program code might conceive the mechanics behind an assignment

operation, such as:

a = 1;

b = 2;

a = b; //what is the value of a?

Bornat et al. (2008) found that for “simple” assignment operations which “hardly look as if

they should be hurdles at all” (p54), students held many different mental models for how

the program might execute. Even after a few weeks of instruction, some participants failed

to apply the correct model consistently in a diagnostic test. This illustrates that the ways in

which learners conceptualise computer programs can be diverse, and incorrect models

may persist unless there is some intervention. Consequently, it is important not to dismiss

the early challenges experienced by individuals as trivial or as constituting a lack of effort

or of talent. Put elegantly, “if students struggle to learn something, it follows that this is for

some reason difficult to learn” (Jenkins 2002, p53). These issues can be addressed through

soft scaffolding, such that individual understandings are continuously probed to enable

the timely delivery of tailored support (Simons & Klein 2007). Through this, misunderstandings

are traced and corrected via the provision of intermediate learning objectives. When not

promptly addressed, such issues can impede progress because learners are forced to the edge

of, or perhaps beyond, their ‘zone of proximal development’ (Vygotsky 1978, p86).

Yet, Kinnunen & Malmi (2006) note there can be “individual variety in how students

respond to the same situation” (p107). Many learners who encounter such challenges are
The Higher Education Academy Proc. HEA STEM Conf. (2013)

86 doi:10.11120/stem.hea.2013.0005

M.J. Scott & G. Ghinea
able to overcome them without assistance, albeit perhaps after some frustration. So why

are some people tenacious while others seem helpless? A potential candidate for mediating

this response is an individual’s academic beliefs (Kinnunen & Beth 2012), notably, implicit

beliefs surrounding programming aptitude (Murphy & Thomas 2008). Dweck (1999, 2002)

divides learners into entity-theorists, who believe their aptitude is a natural fixed trait, and

incremental-theorists, who believe their aptitude is a malleable quality that is increased

through effort. These two groups demonstrate different behaviours when they encounter

difficulty (ibid.), as summarised in Table 1.
Table 1 Potential influence of different theories of aptitude (adapted from Dweck 2002).

Entity-Theorists Incremental-Theorists

Goal of the student To demonstrate a high coding

ability

To improve coding ability, even if poor

progress revealed

Meaning of failure Indicator of low programming

aptitude

Indicative of lack of effort, strategy, or

prerequisites

Meaning of effort Demonstrates low

programming aptitude

Method of enhancing programming

aptitude

Strategy when meets

difficulty

Less time practising More time practising

Performance after

difficulty

Impaired Equal or improved
Too often, it is the case that learners start to believe an inherent aptitude is required

to become a programmer. Such beliefs inhibit practice. Thus, it is important that

programming pedagogies reinforce the incremental theory. An example might include the

liberal use of detailed informative feedback. This approach focuses on improvement

through illustrating weaknesses to overcome, rather than merely labelling learners with

summative grades. The latter might be interpreted as a judgement of aptitude.

Furthermore, as many learners “often focus on topics associated with assessment and

nothing else” (Gibbs & Simpson 2004, p14) some form of marking is often necessary as an

extrinsic motivator. Such marking should be complemented with feedback that helps

students understand that programming requires a surprising amount of time and effort, as

this has been shown to enhance mindsets when coupled with appropriate instruction on

the neuroscience underpinning Dweck’s theory (Cutts et al. 2010).

While Dweck’s (1999, 2002) classification of learners’ theories is useful in illustrating some

differences, it does not explain why some learners seem far more determined than others.

Potential factors, as Huggard (2004) and Rogerson & Scott (2010) affirm, are the negative

affective states that learners can experience as they write code. These “states [,] such as

frustration and anxiety [, can] impede progress toward learning goals” (McQuiggan et al.

2007, p698). However, while some learners become overtly frustrated with the ‘all or

nothing’ nature of preparing a computer program for compilation, others press on without

complaint, demonstrating an admirable level of experimentation and debugging

proficiency. This can be somewhat surprising given that anything short of a completely

syntactically correct set of coded instructions will result in failure, and it is unusual for

those at an introductory level to write robust code on their first attempt.

A potential candidate for mediating how learners are able to overcome negative affect is

academic self-concept. That is, “self-perceptions formed through experience with and

interpretations of one’s environment” (Marsh & Martin 2011, p60). Many domain-specific

forms of self-concept, such as programming self-concept, demonstrate a reciprocal
© 2013 The Higher Education Academy Proc. HEA STEM Conf. (2013)

87 doi:10.11120/stem.hea.2013.0005

relationship with academic achievement in their respective area (ibid.) as well as, more

generally, interactions with study-related emotions (Goetz et al. 2010). Extending this

notion, learners who believe that they are programmers, those with a high programming

self-concept, may be able to overcome frustrations and anxiety more easily, thereby

maintaining high levels of motivation. So, how can self-concept be enhanced? A

meta-analysis of 200 interventions shows that practices which target a domain-specific

facet of self-concept, with an emphasis on motivational praise and feedback alongside skill

development, yield the largest effects (O’Mara et al. 2006). Other aspects of effective

practice might also emphasise learning activities that are enjoyable and nurture a sense

of pride (Goetz et al. 2010).
3. Conclusion

Learners often need to practice writing code frequently in order to acquire basic

programming competencies. This paper questions how learning environments can be

better designed in order to facilitate deliberate practice, describing three potential barriers

to such practice: the radical novelty of the learning material; the belief that some inherent

aptitude is required; and the emergence of unfavourable affective states. It is proposed that

examples of good practice might include: soft scaffolding; on-going informative feedback

that encourages a growth mindset; and an emphasis on self-enhancement through

motivational feedback and pride-worthy activities in addition to skills development.

However, empirical research is needed to establish the potential impact of these problems

and proposals.
References

Beaubouef, T. and Mason, J. (2005) Why the high attrition rate for computer science

students: some thoughts and observations. ACM SIGCSE Bulletin 37 (2), 103–106.

Bornat, R., Dehnadi, S. and Simon, S. (2008) Mental models, consistency and programming

aptitude. In Proceedings of the 10th Australasian Computing Education Conference,

pp53–61.

Byrne, P. and Lyons, G. (2001) The effect of student attributes on success in programming.

ACM SIGCSE Bulletin 33 (3), 49–52.

Carter, L. (2006) Why students with an apparent aptitude for computer science don’t choose

to major in computer science. ACM SIGCSE Bulletin 38 (1), 27–31.

Caspersen, M., Benedsen, J. and Larsen, K. (2007) Mental models and programming

aptitude. ACM SIGCSE Bulletin 39 (3), 206–210.

Cutts, Q., Cutts, E., Draper, S., O’Donnell, P., and Saffrey, P. (2010) Manipulating Mindset to

Positively Influence Introductory Programming Performance. Proceedings of the 41st ACM

Technical Symposium on Computer Science Education pp431–435.

Dijkstra, E.W. (1989) A debate on teaching computer science: on the cruelty of really

teaching computer science. Communications of the ACM 32 (12), 1398–1404.

Du Boulay, J. (1989) Some difficulties of learning to program. Educational Computing

Research 2 (1), 57–53.

Dweck, C.S. (1999) Self-Theories: Their Role in Motivation, Personality, and Development.

Philadelphia, PA, USA: Psychology Press.
© 2013 The Higher Education Academy Proc. HEA STEM Conf. (2013)

88 doi:10.11120/stem.hea.2013.0005

M.J. Scott & G. Ghinea
Dweck, C. (2002) Messages that motivate: how praise molds students’ beliefs, motivation,

and performance (in surprising ways). In Improving Academic Achievement

(ed. J. Aronson). San Diego: Academic Press, pp37–60.

Erdogan, Y., Aydin, E. and Kabaca, T. (2008) Exploring the psychological predictors of

programming achievement. Instructional Psychology 35 (3), 264–270.

Ericsson, K. (2006) The influence of experience and deliberate practice on the development

of superior expert performance. In The Cambridge Handbook of Expertise and Expert

Performance (ed. K. Ericsson et al.). Cambridge: Cambridge University Press, pp683–703.

Ericsson, K., Krampe, R. and Tesch-Romer, C. (1993) The role of deliberate practice in the

acquisition of expert performance. Psychological Review 100 (3), 363–406.

Furber, S. (2012) Shut Down or Restart? The Way Forward for Computing in UK Schools.

London: Royal Society.

Gibbs, G. and Simpson, C. (2004) Conditions under which assessment supports students’

learning. Learning and Teaching in Higher Education 1, 3–31.

Goetz, T., Cronjaeger, H., Frenzel, A., Lüdtke, O. and Hall, N. (2010) Academic self-concept

and emotion relations: domain specificity and age effects. Contemporary Educational

Psychology 35 (1), 44–58.

Gove, M. (2012) Digital Literacy and the Future of ICT in Schools. Presentation at the BETT

Show, Department for Education. Available at http://www.education.gov.uk/inthenews/

speeches/a00201868/michael-gove-speech-at-the-bett-show-2012 (accessed 5 November 2012).

Huggard, M. (2004) Programming trauma: can it be avoided? In Proceedings of the BCS

Grand Challenges in Computing: Education, pp50–51.

Jenkins, T. (2001) Teaching programming: a journey from teacher to motivator. In

Proceedings of the 2nd HEA Conference for the ICS Learning and Teaching Support

Network, pp65–71.

Jenkins, T. (2002) On the difficulty of learning to program. In Proceedings of the 3rd HEA

Conference for the ICS Learning and Teaching Support Network, pp53–58.

Kinnunen, P. and Malmi, L. (2006) Why students drop out CS1 courses? In Proceedings of

the 2nd International Computing Education Research Workshop, pp97–108.

Kinnunen, P. and Beth, S. (2012) My Program is OK - Am I? Computing Freshman’s

Experience of Doing Programming Assignments. Computer Science Education 22 (1), 1–28.

Livingstone, I. and Hope, A. (2011) Next Gen: Transforming the UK into the World’s Leading

Talent Hub for the Video Games and Visual Effects Industries. London: NESTA.

Marsh, H. and Martin, A. (2011) Academic self-concept and academic achievement:

relations and causal ordering. British Journal of Educational Psychology 81 (1), 59–77.

McCracken, M., Almstrum, D., Diaz, M., Guzdial, D., Hagen, Y., Kolikant, C., Laxer, L., Thoman, I.,

Utting, T., and Wilusz, T. (2001) A multi-national, multi-institutional study of assessment of

programming skills of first year CS students. ACM SIGCSE Bulletin 33 (4), 125–140.

McGettrick, A., Boyle, R., Ibbett, R., Lloyd, J., Lovegrove, G. and Mander, K. (2005) Grand

challenges in computing: education: a summary. The Computer Journal 48 (1), 42–48.

McQuiggan, S., Lee, S. and Lester, J. (2007) Early prediction of student frustration.

Affective Computing and Intelligent Interaction 47 (38), 698–709.

Murphy, L. and Thomas, L. (2008) Dangers of a Fixed Mindset: Implications of Self-Theories

Research for Computer Science Education, ACM SIGCSE Bulletin 40 (3), 271–275.
© 2013 The Higher Education Academy Proc. HEA STEM Conf. (2013)

89 doi:10.11120/stem.hea.2013.0005

http://www.education.gov.uk/inthenews/speeches/a00201868/michael-gove-speech-at-the-bett-show-2012
http://www.education.gov.uk/inthenews/speeches/a00201868/michael-gove-speech-at-the-bett-show-2012

O’Mara, A.J., Marsh, H.W., Craven, R.G. and Debus, R.L. (2006) Do self-concept

interventions make a difference? A synergistic blend of construct validation and

meta-analysis. Educational Psychologist 41, 181–206.

Rogerson, C. and Scott, E. (2010) The fear factor: how it affects students learning to

program in a tertiary environment. Information Technology Education 9 (1), 147–171.

Simon, Fincher, S., Robins, A., Baker, B., Box, I., Cutts, Q., de Raadt, M., Haden, P.,

Hamer, J., Hamilton, M., Lister, R., Petre, M., Sutton, K., Tolhurst, D. and Tutty, J. (2006)

Predictors of success in a first programming course. In Proceedings of the 8th Australasian

Computing Education Conference, pp189–196.

Simons, K. and Klein, J. (2007) The impact of scaffolding and student achievement levels in

a problem-based learning environment. Instructional Science 35, 41–72.

Soloway, E., Bonar, J. and Ehrlich, K. (1983) Cognitive strategies and looping constructs: an

empirical study. Communications of the ACM 26 (11), 853–860.

Tew, E. and Guzdial, M. (2011) The FCS1: A language independent assessment of CS1

knowledge. In Proceedings of the 42nd ACM Technical Symposium on Computer Science

Education, pp111–116.

Ventura, P. (2005) Identifying predictors of success for an objects-first CS1. Computer

Science Education 15 (3), 223–243.

Vygotsky, L. (1978) Mind in Society: The Development of Higher Psychological Processes.

London: University Press.

Wilson, B. and Shrock, S. (2001) Contributing to success in an introductory computer

science course: a study of twelve factors. ACM SIGCSE Bulletin 33 (1), 184–188.

Winslow, L.E. (1996) Programming pedagogy – A psychological overview. ACM SIGCSE

Bulletin 28 (1), 17–22.
© 2013 The Higher Education Academy Proc. HEA STEM Conf. (2013)

90 doi:10.11120/stem.hea.2013.0005

	Educating Programmers: A Reflection on Barriers to Deliberate Practice
	Abstract
	1. Introduction
	2. Cognitive-affective barriers and deliberate practice
	3. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 130
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 130
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[Mid resolution]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

