
Solving the Physical Travelling Salesman
Problem: Tree Search and Macro-Actions

Diego Perez Edward J. Powley Daniel Whitehouse
Philipp Rohlfshagen Spyridon Samothrakis Peter I. Cowling

Simon M. Lucas

Abstract

This paper presents a number of approaches for solving a real-time game con-
sisting of a ship that must visit a number of waypoints scattered around a two-
dimensional maze full of obstacles. The game, the Physical Travelling Salesman
Problem (PTSP), which featured in two IEEE conference competitions during
2012, provides a good balance between long-term planning (finding the optimal
sequence of waypoints to visit), and short-term planning (driving the ship in the
maze). This paper focuses on the algorithm that won both PTSP Competitions: it
takes advantage of the physics of the game to calculate the optimal order of way-
points, and it employs Monte Carlo Tree Search (MCTS) to drive the ship. The
algorithm uses repetitions of actions (macro-actions) to reduce the search space
for navigation. Variations of this algorithm are presented and analysed, in order
to understand the strength of each one of its constituents and to comprehend what
makes such an approach the best controller found so far for the PTSP.

1 Introduction
Artificial Intelligence (AI) for real-time video games has become an important field of
study in recent years, and within the field there are a diverse range of interesting chal-
lenges and benchmarks. The games studied vary greatly in complexity and sometimes
several problems have to be tackled to progress within small decision time budgets.

In this paper, the focus is on the Physical Travelling Salesman Problem (PTSP), a
single-player real-time video game where the player needs to complete a puzzle pro-
viding actions at a rate of one every 40ms. This game featured in two international
IEEE competitions during 2012 [1], receiving numerous entries that tried to solve the
problem employing a range of different techniques.

This paper is centred on the application of Monte Carlo Tree Search (MCTS) [2]
to the PTSP, using different planners and mechanisms to reduce the search space and
to improve performance. MCTS is based on two main concepts: the first one is the
balance between exploration and exploitation of the search space, using a tree selection
mechanism based on the Upper Confidence Bound for Trees (UCT) [3]. The second
concept is the use of Monte Carlo (MC) simulations to compute estimated rewards for
applying different actions in certain states. The controller explained here is the winner
of both editions of the competition. The goal of the paper is to provide insight into
the various components of the controller, analysing its strengths, weaknesses and the
importance of each one of its constituents.

1

MCTS is a game tree search method that has shown outstanding performance where
some other techniques, such as minimax or depth first search, have failed. A clear
example of this is the game of Go, where MCTS is the first algorithm able to provide a
professional level of play in some versions of the game [4]. Since then, MCTS has been
applied to a wide range of different games and applications. Browne et al. [5] present,
in a complete survey, the description of the algorithm, variations and applications.

In the domain of real-time games, MCTS has been applied to different problems.
For instance, Samothrakis et al. [6] compared different MCTS variants in the game of
Tron, including heuristics that dissuaded the player from performing suicidal move-
ments. Also, Den Teuling [7], in a more recent paper, proposes a UCT player that
handles simultaneous moves and predicts outcomes without completing a full simula-
tion.

Another domain where MCTS has been successfully applied is Ms Pac-Man. In
this game, the player controls Ms Pac-Man aiming to eat all the pills scattered in the
maze while avoiding being captured by the ghosts. Ikehata et al. [8] propose a version
of MCTS that identifies dangerous moves and zones in the map where it is likely to be
captured.

Single-player real-time games, such as the PTSP, have also been used as bench-
marks for MCTS techniques. For instance, Zhongjie et al. [9] applied MCTS to the
well known game of Tetris. The authors included a novel mechanism in MCTS that
pruned branches of the tree to remove those actions that would create holes in the array
of blocks. The modification increased the time needed to decide a move, but the actions
taken produced better results than the unmodified version of the algorithm.

The PTSP itself has also been approached using MCTS techniques. A previous
version of the problem, where the maps had neither obstacles nor boundaries, was used
by Perez et al. [10] to suggest the importance of heuristic knowledge in the tree search
policy and the Monte Carlo simulations. Finally, the algorithm described in this paper
won the PTSP competition twice in 2012, making use of MCTS. The first version of
the winning controller is explained in [11]. One of the key aspects of this controller is
the use of macro-actions. As the PTSP is a single player and deterministic game, it is
very convenient to group single actions into pre-defined sequences to reduce the search
space size. For instance, a macro-action would be the repetition of a single action a
for T time steps. These abstractions can help to reduce the branching factor and the
MC simulations of the algorithm can look further ahead with perfect accuracy. The
idea of macro-actions (or temporally extended actions) has a long history in Artificial
Intelligence (see [12]) and has been used extensively in domains where the size of the
state space would make the cost of searching prohibitive with current computational
resources(e.g. [13]).

Balla and Fern [14] applied UCT to the Real Time Strategy game Wargus. This
game is based on tactical assault planning, where multiple units are concurrently per-
forming actions in the game and different actions, executed simultaneously, can take
a variable duration. The authors discretize this continuous state in an abstraction that
simplifies the characteristics of the current game layout: transitions between states are
managed by actions that affect a group of units, reducing the size of the tree search and
allowing more efficient simulations.

Abstracted action spaces have also been used, for instance, by Childs et al. [15] (and
recently revisited by Van Eyck et al. [16]), who applied combined groups of actions
when using UCT in the artificial game tree P-Game. A P-Game tree is a minimax
tree where the winner is decided by a counting mechanism on the final state of the
board. In their study, the authors group several similar actions in a single move to

2

reduce the branching factor, obtaining promising results. Powley et al. [17] employed
a similar technique when applying MCTS to the card game of Dou Di Zhu, where a
single move choice is sometimes split into two separate and consecutive decisions to
reduce branching factor at the expense of tree depth.

The rest of this paper is organised as follows: Section 2 describes the PTSP game
and Section 3 explains the general architecture of the PTSP controller. Section 4 intro-
duces then the tree search methods employed in this research, and Sections 5, 6 and 7
describe the different components and parameters of the controller: macro-actions,
value functions and TSP solvers, respectively. The experimental setup is described in
Section 8 and the results and analysis are presented in Section 9. Finally, the conclu-
sions and future work are presented in Section 10.

2 Physical Travelling Salesman Problem

2.1 The Game
The Physical Travelling Salesman Problem (PTSP) is an adaptation of the Travelling
Salesman Problem (TSP) to convert it into a single-player real-time game. The TSP is
a well known combinatorial optimisation problem where a series of cities (or nodes in
a graph) and the costs of travelling between them are known. A salesman must visit all
these cities exactly once and go back to the starting city following the path of minimum
cost.

In the PTSP, the player (i.e. the salesman) governs a spaceship that must visit a
series of waypoints scattered around a maze as quickly as possible. The PTSP is a
real-time game, implying that an action must be supplied every 40 milliseconds. The
available actions are summarized in Figure 1. These actions are composed of two
different inputs applied simultaneously: acceleration and steering. Acceleration can
take two possible values (on and off), while steering can turn the ship to the left, right
or keep it straight. This leads to a total of six different actions. In case the controller
fails to return an action after the time limit, an NOP action (ID: 0) is applied, which
performs no steering and no acceleration.

Figure 1: Action space of the PTSP

The state of the ship is kept from one game step to the next, and three different vec-
tors are modified after applying a single action. The orientation of the ship is changed
as shown in Equation 1, given the ship’s orientation in the last step dt and the rotation

3

angle α (a fixed angle that can be positive or negative, depending on the sense of the
steering input, or 0 if the ship is told to go straight). Equation 2 indicates how the
velocity vector is modified, given the previous velocity vt, the new orientation, an ac-
celeration constant (K) and a frictional loss factor (L). In this case, the acceleration
input determines the value of Tt: being 1 if the action implies thrust or 0 otherwise.
Finally, Equation 3 updates the position of the ship by adding the velocity vector to
its location in the previous game step (pt). This physics model keeps the inertia of the
ship between game cycles, making the task of navigating the ship more challenging.

dt+1 :=

(
cos(α) − sin(α)
sin(α) cos(α)

)
dt (1)

vt+1 := (vt + (dt+1TtK))L (2)

pt+1 := pt + vt+1 (3)

The obstacles of the maze do not damage the ship, but hitting them produces an
elastic collision, which modifies the velocity of the ship (both in direction and magni-
tude). An example of a map distributed with the game is shown in Figure 2.

Figure 2: Example of a PTSP map.

In addition to returning an action every 40 milliseconds, a controller designed for
the PTSP must respect two other time limits: an initialization time and a limit to reach
the next waypoint in the game. Both times depend on the number of waypoints present,
which in the experiments described in this paper are 30, 40 and 50. The initialization
time, that can be used by the controller to plan the route to follow before the game
begins, is set to 1 second per each 10 waypoints. The time to reach the next waypoint
depends on the density of the waypoints in the maze: maps with 30 waypoints allow
700 time steps, 40 waypoints imply 550 game ticks and 50 permit the usage of 400

4

Figure 3: Example of different routes and performances in PTSP. Figures a and c show
the order of waypoints according, respectively, to a distance-based TSP solver and a
second planner that takes the physics of the game into account. Figures b and d show
the trajectory described while following these routes. Note that the distance-based
route completes the game in 1040 game ticks, while the physics-based one visits all the
waypoints in only 564 steps.

game steps. These counters are set to this limit every time a waypoint is visited, and
are decreased by 1 at every cycle. If the value reaches 0, the game is over. There is also
a second counter that counts the total number T of steps of the game.

The final score of the game is defined by the tuple (W,T) where W is the number
of waypoints visited and T is the total time used. Between two matches, the one that
gets more waypoints is considered to be the best. In case of a draw, the one that finished
the game in fewer time steps wins.

At every game step, the controller is supplied with a copy of the current game state
and point in time the move is due. The game state contains information about the ship
itself (position, velocity, orientation), the game (time left, number of waypoints vis-
ited), the map (position of obstacles and path-finding queries) and waypoints (positions
and whether they have been visited or not). However, the most important feature of this
game state is that it provides a forward model to run simulations. In other words, it is
possible to check what the future states of the game would be if a specific sequence
of moves were played. The PTSP is a deterministic and single-player game and the
simulations performed are completely accurate. This makes tree search and simulation
approaches especially well suited for this kind of problem.

2.2 PTSP versus TSP
A reasonable approach to solving the PTSP is to divide the problem into its two con-
stituents: the order of waypoints to follow and navigating the ship to each one of them.
However, these two problems are highly interdependent, as ignoring the physics model
of the game may lead to a suboptimal order of waypoints. In particular, if the order
of waypoints is obtained only taking the distances between the waypoints into account
(calculated, for instance, using the A* algorithm) the final result may be suboptimal.
It is worth noting that the final objective is to minimize the time taken to visit all way-
points, and not the distance. Hence, routes that might not seem optimal because of
their length could provide better solutions if the ship is able to drive them quickly. In
general, it has been suggested [1] that routes that minimize the changes of direction and
cover waypoints in straight (or almost straight) lines are better for the PTSP. Figure 3
(from [1]) shows a clear example of these situations in PTSP.

5

2.3 The PTSP competition
The PTSP featured in two competitions in 2012, held at two international conferences:
the IEEE World Congress on Computational Intelligence (WCCI) and the IEEE Con-
ference on Computational Intelligence and Games (CIG).

In both competitions, the participants were able to create controllers in Java by
downloading a starter kit that contains some sample controllers and 10 different maps.
A server, accessible at www.ptsp-game.net, was running continuously, receiving
submissions and executing the controllers in these 10 maps and other groups of maps,
created to provide a test mechanism for the participants in the machine where the final
evaluation would be made.

Following the deadline of the competition, the controllers played a set of 20 new
maps that had never been seen or played by the participants before. Each controller
was executed 5 times on each map. The final result was the average of the best three
matches, featuring waypoints and time taken. The players, ranked according to number
of waypoints visited and time taken, were awarded following a Formula One style
scoring scheme (described in Section 9.3). The winner of the competition is the player
who submitted the controller that achieved the most points across all maps.

In the WCCI competition [18], only maps with 10 waypoints were considered.
However, in the CIG edition of the competition, the maps were changed to contain 30,
40 and 50 waypoints. In this study, the maps used for the experiments are the ones
employed for the final rankings of the CIG Competition.

The winning method of both bot competitions was the entry by Powley et al., who
described their WCCI controller in [11]. This controller, based on MCTS, macro-
actions and a physics-based TSP solver, is the base for the experiments described in
this paper.

3 The PTSP Controller
The following sections in the paper describe the different constituents of the PTSP
controller, such as the TSP solvers, search methods and macro-action discretization.
Figure 4 shows the general architecture of the controller, which is common for all
configurations tested in this research.

Figure 4: General scheme of the PTSP controller.

6

www.ptsp-game.net

During the initialization step, the TSP Route Planner (or TSP Solver) obtains the
order of waypoints to follow during the game. Then, the game requests an action from
the PTSP Controller (also mentioned here as the Driver) at every game step, providing
information about the game state, until the game is ended. In each one of these cycles,
the controller simulates actions in the game, deciding which will be the next action to
execute. As will be explained later in Section 5, macro-actions are used to discretize
the search space. While the controller is executing a given macro-action at time t, the
simulations are performed in order to find out which is the best macro-action to execute
at time t+ T (where T is the length of all macro-actions).

4 Search methods for the PTSP controller
Three different search methods have been employed in this study to tackle the PTSP:
Depth First Search, Monte Carlo simulations and Monte Carlo Tree Search. All these
methods share the same time constraint: a move decision must be made within the
time given (40ms). This feature determines the way the algorithms are designed, as
adjusting to this time budget makes it impossible to reach the end of the game in the
vast majority of cases.

Additionally, the PTSP is an open-ended game: it is not possible to find a state
in the search space where all waypoints are visited just by applying uniformly ran-
dom action selection. Indeed, even reaching the next waypoint to visit is not normally
achievable via uniform random simulations. It is therefore essential to add a heuristic
value function capable of evaluating the quality of the different states found in the game
(for a description of these, see Section 6). This section details the search procedures
employed in this study.

4.1 Depth First Search
Depth First Search (DFS) is a traditional graph or tree search algorithm. It searches
exhaustively at each node of the tree, iteratively expanding the next unvisited child and
searching deep until a non-expandable node is reached. The search navigates up the
tree to find the next unexpanded node and continues this process, until all nodes below
the root have been visited.

Starting from the root, which represents the current state of the game, actions are
applied that lead to future game states, using the forward model mentioned in Section 2.
These future states, derived after applying an action, are taken as children of the parent
node. Finally, the action that led to the best score achieved is taken as the move to play
in the game.

In order to fulfil the time budget limitations, a maximum depth for the search needs
to be decided. In this case, it has been determined empirically that when depth 4 has
been reached, DFS cannot expand any further without exceeding the imposed time
limit. Therefore, when a node in this depth is reached, an evaluation is performed in
order to assign a score to the state found, using one of the state evaluators described in
Section 6. Owing to this depth limitation, the number of states that are evaluated for
each decision is 64 = 1296.

7

4.2 Monte Carlo Simulations and UCB1
Monte Carlo (MC) methods are based on random simulations that sample the search
space uniformly or guided by heuristics. In the case of the PTSP, simulations are
performed from the current state of the tree (or root), choosing a sequence of actions
uniformly at random until a maximum depth has been reached. The state of the game
is then evaluated. Different values for the simulation depth have been tried in the
experiments described in this paper. The depth of the simulation and the 40ms time
budget sets the limit of how many simulations can be performed.

If actions are picked uniformly at random, it is expected that each action is selected
one sixth of the time, producing an evenly distributed search. This approach, however,
does not benefit from the fact that one or more actions can be better than others, as
suggested by the scores obtained by the evaluations at the end of the simulations.

To overcome this problem, a multi-armed bandit selection policy is employed.
Multi-armed bandits is a problem from probability theory where each one of the multi-
ple slot machines produces consecutive rewards rt : r1, r2, . . . (for time t = 1, 2, . . .)
driven from an unknown probability distribution. The objective is to minimize the re-
gret, i.e. the losses of not choosing the optimal arm. Multi-armed bandit policies select
actions in this problem by balancing the exploration of available actions (pulling the
arms) and the exploitation of those that provide better rewards (optimisation in the face
of uncertainty).

Auer et al. [19] proposed the Upper Confidence Bound (UCB1) policy for bandit
selection:

a∗ = argmax
a∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
(4)

The objective is to find an action a that maximizes the value given by the UCB1
equation. Here, Q(s, a) represents the empirical average of choosing action a at state
s. It is calculated as the accumulated reward of choosing action a divided by how many
times this action has been picked. Q(s, a) is the exploitation term, while the second
term (weighted by the constant C) is the exploration term. Note that, if the balancing
weight C = 0, UCB1 follows greedily the action that has provided the best average
outcome so far. The exploration term relates to how many times each action a has
been selected from the given state s (N(s, a)) and the amount of selections taken from
the current state (N(s)). When action a is chosen, the values of N(s, a) and N(s)
increase. The effect of this is that the exploration term for other actions different than a
increase, allowing a more diverse exploration of the different available actions in future
iterations of the algorithm.

The value of C balances between these two terms. If the rewards Q(s, a) are nor-
malized in the range [0, 1], a commonly used value for C in single-player games is

√
2.

It is also important to notice that, when N(s, a) = 0 for any action, that action must be
chosen. In other words, it is not possible to apply UCB1 if all actions from a state have
not been picked at least once.

When the time budget is over, the action to execute in the game is the one that has
been chosen more times by UCB1.

8

4.3 Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) is a tree search technique that creates a tree by
performing Monte Carlo simulations. The best known version of MCTS is Upper Con-
fidence Bound for Trees (UCT), proposed by Kocsis and Szepesvári [3, 20]. UCT uses
UCB1 (as described in Section 4.2) to build a potentially asymmetric tree that is grown
towards the more promising parts of the search space. Every time UCT selects an ac-
tion that leads to a state which is not represented in the tree, a new node is added to it
and a Monte Carlo simulation is started from there.

The MCTS algorithm can be seen as a four-step process that is repeated for several
iterations. During the first step (Selection), the tree selection policy (e.g. UCB1 for
UCT) selects the next action to take. The action leads to a node in the tree. If the
node is already present in the tree then the selection policy is applied again (and so on
recursively); if not, it is added as a new leaf node (Expansion step). An MC simulation
is initiated from this node until a pre-determined depth or the end of the game. The
state reached at the end of the simulation is evaluated (Simulation step). This MC
simulation is driven by a default policy, that can be uniformly at random (as it is in this
study) or guided by a heuristic.

The last step in the iteration is Backpropagation. During this phase, the reward
obtained by the evaluation function is back-propagated throughout the visited nodes
until the root. All the nodes traversed update their internal statistics: N(s), N(s, a)
and Q(s, a), gathering knowledge for the tree selection phase in the next iterations of
the algorithm.

As in the previous cases, the depth of the MC simulation must be limited as, if not,
it would not be possible to reach the end of the game within the allowed time budget.
These depth values are defined in the experimental setup, but it is important to notice
that the simulation depth corresponds to the number of actions taken from the root of
the tree, and not from the new expanded node at each iteration. This is done in order to
provide the same look ahead from the children of the root despite the asymmetric tree
growth.

5 Macro-actions in the PTSP
The algorithms presented in this paper treat the PTSP as two different (but related) sub-
problems: navigating the ship and planning the order of waypoints to be followed. This
section describes the approach used to drive, or steer, the ship along the route chosen
by the methods described in Section 7, i.e. how to follow the paths from one waypoint
to the next. (In line with games literature, “steering” here includes acceleration as well
as rotation of the ship.) An input to the ship is sent once every 40ms, in order to steer
the ship around obstacles and towards waypoints.

The steering problem for PTSP can be considered as a sequential decision problem
on a tree. It can also be considered as a problem on a directed graph, i.e. allowing
multiple paths to the same node and possibly cycles, but for simplicity the graph is
assumed to be a tree. The nodes of the tree are states and the edges are actions. A
macro-action M is defined as a sequence of actions M = 〈a1, . . . , an〉. Executing a
macro-action corresponds to playing out the sequence of actions contained within the
macro-action. A decision tree of macro-actions can be built: the node set of this tree is
a subset of the node set of the original decision tree.

In the PTSP, the set of legal actions from a state (i.e. the set of edges out of the

9

corresponding node) is the same for all states. If this was not the case, more care would
be needed in defining macro-actions: if the macro-action is to be applied at state s0,
and si is the state eventually obtained by applying all actions, then ai+1 must be a legal
action from si.

For the PTSP, the purpose of macro-actions is to reduce the size of the problem
and to increase the ability of tree search methods to perform forward planning. This
can be achieved by reducing the granularity of possible paths and preventing the ship
from making small (sometimes meaningless) adjustments to speed and direction. The
macro-actions used in this paper are arguably the simplest possible, consisting of exe-
cuting one of the six available actions (see Figure 1), for a fixed number of time steps
T .

More complex macro-actions were tested, such as rotating to one of several spec-
ified angles while thrusting or not thrusting. One problem that arose was that search
methods did not perform well when different actions took different lengths of time to
execute: since the evaluations used (Section 6) are implicitly functions of distance, a
search method optimising these value functions tends simply to favour longer macro-
actions over shorter ones. Having each depth of the tree corresponding to the same
moment in time and having the search roll out to a fixed depth means instead that
search methods will optimise the path length (by maximizing distance travelled in a
fixed amount of time).

On a map of 50 waypoints, the game always takes less than 20000 time steps (a
longer time would imply that the time limit between waypoints was exceeded at least
once). Thus the decision tree has up to 620000 nodes. The game takes less than 20000

T

macro-actions, therefore the size of the macro-action tree is bounded above by 6
20000

T ,
which represents a hundreds of orders of magnitude reduction in the size of the problem
to be solved (when T ≥ 2). To illustrate this, let us make a conservative estimate of
2000 time steps for the average length of a game, and set T = 15. The game tree
contains 62000 ≈ 101556 states, whereas the macro-action tree contains 6

2000
15 ≈ 10103

states. The size of the macro-action tree in this example is comparable to the game
tree size for a complex board game: for comparison, the number of states in 9× 9 Go
is bounded above by 81! ≈ 10120. The macro-action tree is of the order 101453 times
smaller than the full game tree.

The parameter T controls the trade-off between the granularity of possible paths
and the forward planning potential for tree search. Since one rotation step corresponds
to a rotation of 3◦, a setting of T = 30 restricts the ship to only making 90◦ turns. (Note
that the ship may have an initial velocity, and may thrust while turning, so the restriction
to 90◦ turns does not restrict the path to 90◦ angles). When using this setting, search
algorithms will find paths that have to bounce off walls or follow convoluted routes to
line up with waypoints. A choice of T = 10 corresponds to 30◦ turns, which allows for
a finer control of the ship and smoother paths. The difference is illustrated in Figure 5
where the path with 90◦ turns is more jagged (and takes longer to follow) than the one
with 30◦ turns. On the other hand, when T = 10 reaching a depth d in the search tree
corresponds to a point in time sooner than with T = 30. This impacts the steering
controller’s ability to plan ahead.

It is worthwhile mentioning that a different approach could also be possible: instead
of executing all the single actions from the best macro-action found, one could only
apply the first one. Macro-actions are employed during MC simulations, but all routes
are possible for the driver as the next best macro-action is computed every 40ms. This
approach, however, allows less time for deciding the next move, as only one game step

10

Figure 5: Examples of the path followed by the MCTS controller. The light grey line
has T = 30 corresponding to 90◦ turns. The black line has T = 10 corresponding to
30◦ turns.

can be used to pick the next action to take.

6 Value functions
The goal state in PTSP (a state in which all waypoints have been collected) can be
several thousand time steps, or several hundred macro-actions, into the future. Finding
such a state purely by tree search is intractable. Instead the search is performed to a
fixed depth, applying a heuristic evaluation function to the resulting nonterminal state,
and allowing the tree search to optimise this heuristic value.

The value functions are based around the “shortest path” distance to a target way-
point, taking obstacles into account. Section 6.1 describes the precomputed data struc-
ture we use to calculate these distances, and Sections 6.2 and 6.3 give the two value
functions tested in this paper.

6.1 Computing Distance Maps
For route planning, it is necessary to estimate the travel time between all pairs of way-
points, taking obstacles into consideration. For the evaluation function used by the
driving algorithms, it is necessary to find the distance between the ship and the next
waypoint, again accounting for obstacles.

The distances between every waypoint and every other non-obstacle point on the
map are computed up-front. This can be done quickly and efficiently using a scanline
floodfill algorithm: maps for the PTSP are represented as 2-dimensional arrays, where

11

Figure 6: An example of the scanline flood fill algorithm. Cells coloured grey are
unfillable. The cell marked A is the current cell. The cells marked f, on the same
row as A, are filled. The cells marked q, on the rows directly above and below A, are
enqueued.

each cell is either an obstacle or open space. This bitmap-like representation is partic-
ularly amenable to algorithms from computer graphics. Distance maps are computed
using a modified scanline flood fill algorithm [21]; see Algorithm 1.

The resulting 2-dimensional array is called a distance map. Once these distance
maps are computed, finding the distance between a waypoint and any other point (way-
point or ship position) can be looked up quickly in O(1) time.

The algorithm initialises every entry in the array to +∞, apart from the entry cor-
responding to waypoint i’s position which is initialised to 0. The algorithm maintains
a queue of cells from which to scan, beginning with waypoint i’s position. From each
cell, the algorithm scans to the left and to the right. For each scanned cell (x, y), a
tentative distance dt(x, y) is computed as

dt(x, y) = min
(x′,y′)

D[x′, y′] +
√
(x′ − x)2 + (y′ − y)2 (5)

where (x′, y′) ranges over the orthogonal and diagonal neighbour cells of (x, y). The
cell is considered fillable if dt(x, y) < Di[x, y], i.e. if the tentative distance is less than
the distance currently stored inDi. During the scan, fillable cells are updated by setting
Di[x, y] = dt(x, y); the scan terminates upon encountering an unfillable cell. While
scanning, the algorithm checks the cells immediately above and below the current row:
upon transitioning from a region of unfillable cells to a region of fillable cells, the first
fillable cell is enqueued. An example of this is shown in Figure 6.

Obstacle cells are always considered unfillable. Every obstacle is also surrounded
with an unfillable +-shaped region whose radius is equal to the ship’s radius. This ef-
fectively means that the distance map, and the algorithms that use it, ignore any spaces
or corridors that are too narrow to accommodate the ship. A +-shaped rather than
circular region is used purely for computational speed: for the purposes of removing
narrow corridors, both are equally effective.

Whether a cell is fillable depends on the tentative distance, which in turn depends
on the contents of the distance map surrounding the cell, a cell that has previously been
filled or considered unfillable can become fillable again later on. This corresponds to a
new path being found to a cell, shorter than the shortest previously known path. This
is in contrast to the classical flood fill algorithm [21], where a previously filled pixel is
never filled again.

Figure 7 shows an example of a distance map. Note that since distances are com-
puted based on orthogonally and diagonally adjacent cells, the contours are octagonal
rather than circular. Circular contours could be more closely approximated by enlarg-
ing the adjacency neighbourhood, but this implementation is a good tradeoff between

12

Figure 7: An example of a distance map for the point marked×. This is a contour map:
lines show regions where the distance map value is a multiple of 25.

speed and accuracy. The distance maps do not need to be completely accurate, merely
accurate enough to serve as a guide for route planning and obstacle avoidance.

6.2 Myopic Evaluator
At any given point during the game, the route planner (Section 7) identifies the current
target waypoint. Let sr denote the fraction of the distance travelled towards the target
waypoint, scaled so that sr = 0 when the ship is at the previously collected waypoint
(or at the start position if no waypoints have yet been collected) and sr = 1 when the
ship has reached the target waypoint. Here “distance” is the shortest path distance,
looked up in the distance map for the target waypoint (Section 6.1).

The myopic evaluation for state s is calculated as follows:

V (s) =

{
sr if the target waypoint is uncollected,
αw > 1 if the target waypoint is collected.

(6)

In other words, the state value is proportional to distance until the target waypoint is
collected, with all post-collection states having the same value αw. Optimising the
distance in this way, instead of rigidly following the gradient descent paths suggested
by the route planning phase, encourages the controller to take shortcuts to the next
waypoint taking advantage of the physics of the game.

It is important that αw > 1, i.e. that post-collection states have a higher value than
all pre-collection states, as this incentivises the search towards waypoint collection.
Without this, the evaluation is very close at positions in the neighbourhood of a way-

13

Figure 8: A plot of the evaluation of the current state by Equation 7 against time, for
an instance of PTSP. Vertical lines denote states where a waypoint was collected whilst
executing the previous macro-action. Note the jump in evaluation score at these states.

point, which often results in the ship waiting near the waypoint, or spiralling around it
(usually getting closer with each rotation) but not actually passing through it.

6.3 Stepping Evaluator
The myopic evaluator is short-sighted in that it does not distinguish states after collec-
tion of the target waypoint. Another value function is defined to remedy this, which
causes the ship to collect the current target waypoint and end up in a favourable position
for collecting the waypoint after it.

The evaluation of the ship being in a particular state s is calculated as follows:

V (s) = αwsw + αrs
′
r + αsss (7)

where sw is the number of waypoints that have been collected so far along the route
recommended by the route-planning phase (Section 7), s′r is the proportion of the dis-
tance travelled from the last waypoint to the next target waypoint in state s according to
the distance map (Section 6.1) and ss is the speed of the ship, to encourage the steering
algorithm to maintain momentum. The α values are weights that need to be tuned.

Note that s′r is defined similarly to sr for the myopic evaluator, with one crucial
difference: sr considers the target waypoint in the root state, whereas s′r considers the
target waypoint in state s. This is the distinction between the myopic and stepping
evaluators: once the target waypoint is collected, the myopic evaluator considers all
states to be equally good whereas the stepping evaluator begins optimising the distance
to the next waypoint. Choosing αr < αw means that there is a step (a discontinuous
jump) in reward associated with collecting the next waypoint (see Figure 8).

The evaluation explicitly does not reward the agent for collecting waypoints early
(out of route order). Otherwise the MCTS driver has a tendency to make detours to

14

greedily collect waypoints, which generally turns out to be detrimental in the long
term.

Since the amount of time taken is not directly represented in the evaluation, a dif-
ferent evaluation is used at terminal states when all waypoints are collected:

V (s) = αwW + αt(ToutW − t) (8)

whereW is the number of waypoints, Tout is the timeout between collecting waypoints,
t ≤ ToutW is the total number of time steps taken to collect all the waypoints, and αt
is a parameter to tune. This ensures that terminal states have an evaluation of at least
αwW , which is higher than that of any non-terminal states, and that terminal states
which are reached in less time have a higher evaluation than terminal states which took
more time.

The stepping evaluator worked well in the PTSP competition, but has a few flaws.
Most notably, if the ship must turn in the opposite direction after collecting a waypoint,
initially after collecting it the value function will be decreasing as the ship travels fur-
ther away from the new target waypoint, and we will have sr < 0. This occasionally
results in the driving algorithm not collecting the waypoint, as states in which it is col-
lected appear worse than states in which it is not. This situation can be seen in Figure 8
as a dip in reward immediately following the spike for collecting the waypoint; if the
depth of the dip exceeded the height of the spike, the likelihood is that the controller
would fail to collect the waypoint. Solving this problem requires careful balancing
of the parameters αw and αr, to ensure collecting a waypoint always results in a net
increase in value.

7 TSP Solvers
This section describes the methods tested for planning the order in which waypoints are
visited. The ordering is crucial to performance, since a good ordering will result in fast
and short routes and a bad ordering may be impossible to traverse (the controller will
run out of time between waypoints). Further, the search techniques used for steering
the ship do not plan far enough ahead to find good waypoint orderings. In all cases,
the distance between waypoints refers to the floodfill distance taken from precomputed
distance maps (Section 6.1) and not Euclidean distance.

7.1 Nearest Waypoint Now
The simplest “planner” tested does not plan ahead at all. It always instructs the steering
algorithm to collect the nearest waypoint. The target waypoint may change on the
path between two waypoints, when one becomes closer than another. This can lead to
indecisive behaviour in the controller, the target waypoint may frequently change and
no waypoints are collected. All the other planning methods avoid this issue by deciding
a fixed ordering upfront.

7.2 Nearest Waypoint First Planner
This planner selects a waypoint ordering greedily, by choosing the closest waypoint at
each step. In other words, the ith waypoint in the route is the closest waypoint (that
does not occur earlier in the route) to the (i − 1)th waypoint. These orderings may

15

0

1

2
3

4

5

6

7
8

9

10

0

1

2
3

4

5

6

7
8

9

10

0

1

2
3

4

5

6

7
8

9

10

Figure 9: A Hamiltonian path and its two 3-opt moves.

not always be possible to traverse, since the greedy ordering may result in adjacent
waypoints that are far from each other.

7.3 TSP Planner
All of the maps used in the experiments have 30, 40 or 50 waypoints. Solutions to
51-node min-weight Hamilton path problems can be found quickly using the greedy
multiple fragment heuristic [22] and 3-opt local improvement [23, 24] and these are
close enough to optimal for our purposes.

Multiple fragment [22] is a greedy heuristic for constructing a Hamiltonian path.
The algorithm finds the set of edges in the path, iteratively adding the edge with mini-
mal weight that does not invalidate the path so far (i.e. does not create a cycle or result
in a node having a degree greater than 2).

3-opt [23] is a local search technique for refining a path such as that constructed by
multiple fragment: a 3-opt move consists of removing three edges from the path and
adding three edges to obtain a new path; The 3-opt operator repeatedly applies 3-opt
moves that reduce the cost of the path, until no such moves are possible. For each triple
of edges in the path, two 3-opt moves are possible, as illustrated in Figure 9.

This planner uses multiple fragment and 3-opt, with edge weights computed by
distance map, to compute the route.

7.4 Physics Enabled TSP Planner
The TSP planner assumes that the time taken to traverse a route is proportional to its
length. As observed in Section 2.2, this is not true in PTSP: a long straight route with
no sharp turns can often be traversed more quickly than a shorter but more winding
route.

To identify sharp turns, it is useful to estimate the angles at which the ship will
enter and leave each waypoint on a particular route. This is not simply the angle of a
straight line drawn between one waypoint and the next, as this line may be obstructed.

Distance maps can be traversed to find a path from u to v. Let Dv be the distance
map for waypoint v. Then a path is p0, p1, . . . , pk, where p0 = u, pk = v, and pi+1

is the neighbour of pi for which Dv[pi+1] is minimal. These distance map traversal
paths, although “shortest” with respect to a particular metric, are a poor approximation
of the paths taken by the MCTS steering controller.

The path direction at u towards v, denoted −→uv, is an approximation of the direction
in which the ship leaves u when travelling towards v, or enters u when travelling from
v. It is obtained by following the distance map traversal path from u to v until the

16

u

v

uv

Figure 10: Computing the path direction −→uv. The thick grey line is the distance map
traversal path, according to v’s distance map. The dotted line links u with the first
point on the path such that this line is obstructed. The vector −→uv is the unit vector in
the direction of this line.

first instance where the line between u and the current point pi is obstructed. −→uv is
taken to be the unit vector in the direction of pi − u. This is illustrated in Figure 10.
This process of stepping along the path until line-of-sight with the starting point is
lost, rather than e.g. stepping along a fixed distance, ensures that the path directions
do not suffer the same bias towards diagonal and orthogonal movement as the paths
themselves and thus more closely approximate the direction of the ship (assuming the
steering algorithm does not choose a path completely different to the distance map
traversal path, which is not guaranteed). This process is similar to the string-pulling
technique [25] often used in pathfinding for video games.

A “directness” heuristic is also introduced, which is based upon the principle that
paths between two waypoints that have fewer obstacles should be preferred over paths
which have many obstacles and tight turns. Directness is measured by calculating the
ratio between the Euclidean distance and the path distance between two waypoints. If
there are few obstacles this ratio will be small (tending towards 1), however if the path
is long and complex, this ratio will be large. Hence a path is considered more indirect
the more it deviates from a straight line in open space

3-opt normally seeks to minimise the sum of edge weights on the path. To account
for the physical considerations described above, the aim is to minimise a cost function,
incorporating terms that penalise sharp turns at waypoints and indirect paths between
waypoints in addition to the sum of edge weights. Multiple fragment merely provides
an initial guess to be refined by 3-opt, so little would be gained by modifying multiple
fragment in a similar way.

For vertices u and v:

1. let d(u, v) be the shortest path distance between u and v, computed using the
distance map;

2. let e(u, v) be the Euclidean distance between u and v;

3. let −→uv be path direction at u towards v.

Then the cost of a path v0, v1, . . . , vn, assuming that the ship is initially facing in

17

direction u0, is

c(v0, . . . , vn) =

n∑
i=1

d(vi−1, vi) + βp

n∑
i=1

d(vi−1, vi)

e(vi−1, vi)

+ βw

(
−−→u0 · −−→v0v1 +

n−1∑
i=1

−−−→vivi−1 · −−−→vivi+1

)
(9)

for constants βw and βp. The first term is the sum of edge weights. The term modified
by βp measures the directness of the path from one waypoint to the next as the ratio
of the path distance and the Euclidean distance. The term modified by βw measures
the sharpness of the turns the ship needs to make when leaving the starting point and
when travelling through each waypoint. If passing through a given waypoint does not
require a change of direction, the incoming and outgoing vectors point in opposite
directions and so their dot product is −1 (i.e. the cost is negative). If passing through
the waypoint requires a 180◦ turn, the dot product is +1 (i.e. the cost is positive). βp
and βw are parameters to be tuned.

3-opt uses this heuristic in the natural way: when considering whether to make a
3-opt move, the value of c(v0, . . . , vn) is considered in place of the total path length.
Note that if βp = βw = 0, this planner is identical to the TSP planner without physics.

8 Experimental Setup
All the experiments described in this paper have been executed in the set 20 maps
used to run the final evaluations of the IEEE CIG 2012 PTSP Competition, each map
being played 10 times. These maps contain 30, 40 and 50 waypoints, which makes the
problem much more challenging than the maps from the WCCI Competition (only 10
waypoints). Also, this set of maps permits a straightforward comparison with the other
entries to the competition. Additionally, the machine used to run the experiments is
the same server from which the competition was run (a dedicated Intel Core i5 server,
2.90GHz 6MB, and 4GB of memory), which provides reliable comparisons.

The experiments presented in this paper analyse the impact of each one of the
following parameters:

• Search method: DFS, MC or MCTS. The parameter C for Equation 4 has been
set to 1, a value determined empirically.

• Depth of simulations (D): Number of macro-actions used, set to 120, 24, 12, 8,
6 and 4.

• Macro-action length (T): each simulation depth is assigned to one of the follow-
ing values for T : 1, 5, 10, 15, 20 and 30, respectively. Note that each pair tested
(Di,Ti) produces a look ahead in the future of Di × Ti = 120 steps (or single
actions). This produces a fair comparison between algorithms that use different
values for these two parameters.

• Function evaluator: Myopic Evaluator versus Stepping Evaluator.

• TSP Solver: Nearest Waypoint Now, Nearest Waypoint First Planner, TSP Plan-
ner and Physics-Enabled TSP Planner.

18

The experiments have been divided into two groups of tests. A preliminary batch
of experiments was run in order to find a good driver for the PTSP, combining only
the first four parameters described above. These tests aim to identify those drivers that
are able to reach most of the waypoints of each map, using the simplest TSP solver
prepared for this study (Nearest Waypoint First, see Section 7.1). This also allows
us to discard some of the parameter values that perform worse, in order to focus the
second batch of tests on the most promising parameter values, where the other three
TSP solvers are tried.

Comparing two executions with several runs is not as trivial as it might seem. The
simplest option would be to calculate the average of waypoints visited and the time
taken to do so. However, this might lead to some unfair situations. An example would
be to have two drivers, A andB, that obtain different amounts of waypoints on average
(wa = 30, wb = 29) with their respective times (ta = 2500, tb = 1800). Following
the game definition of which solver is better (as described in Section 2), A should be
considered to be better than B because wa > wb. However, one could argue that
B is better as it is much faster and the difference between waypoints is not too big.
Therefore, two different measures are taken to compare results:

• Efficacy: number of waypoints visited, on average. This value is to be maxi-
mized.

• Efficiency: the ratio t/w, that represents an average of the time needed to visit
each waypoint. The problem with this ratio is that it does not scale well when the
amount of waypoints is very small, or even 0. Therefore, only matches where
all waypoints have been visited are considered for this measure. The smaller this
value, the better the solution provided.

9 Results and Analysis
This section presents the results of all the experiments performed in this research.
These results are also available in a document1 and in the PTSP Competition web-
site2. The document contains links to each one of the runs, which detail statistical
information and the result of each single match. Additionally, the page with the run
details contains links that allows all matches played to be watched in a Java applet.

9.1 Macro-action length and function evaluator
The first batch of experiments analyses the effects of using different macro-action
lengths and value functions. In this case, all controllers employ the Nearest Waypoint
Now TSP solver (as described in Section 7.1). The goal is to be able to identify the
best attributes for the driver.

Figures 11 and 12 show the number of waypoints visited using the Myopic and
Stepping evaluation functions respectively, measuring the efficacy of the solvers. Both
pictures include a horizontal line showing the maximum average of waypoints achiev-
able (39), that comes from the distribution of waypoints in the maps tested (7 maps
with 30 waypoints, 8 maps containing 40 and 5 maps with 50).

These two figures show that the Myopic approach performs slightly worse than
the Stepping evaluator function. For both functions, the number of waypoints visited

1https://www.dropbox.com/sh/ksxa53qtm5cjsmj/A_wxxMrLGE
2http://www.ptsp-game.net/bot_rankings_advanced_f1.php

19

https://www.dropbox.com/sh/ksxa53qtm5cjsmj/A_wxxMrLGE
http://www.ptsp-game.net/bot_rankings_advanced_f1.php

1 5 10 15 20 30
Macro Action Length

0

5

10

15

20

25

30

35

40

45
W

a
y
p
o
in

t
v
is

it
s

Max. Avg. Number of Waypoints: 39

DFS

MC

MCTS

Figure 11: Number of waypoint visits with Myopic function evaluation and Nearest
Waypoint Now TSP solver.

increases when the length of the macro-actions reaches a high value (10 to 20). Table 1
shows that the number of waypoints visited decreases slightly when the macro-action
length is increased to 30. This phenomenon happens for the three search methods
presented in this paper, suggesting that the reduction of the problem achieved by the
inclusion of macro-actions leads to better performance.

In general, DFS performs worse than the other algorithms, and even in those cases
where the length of the macro-actions is small (1 and 5), better results are obtained with
MC and MCTS. It is also worthwhile to mention that none of the algorithms is able to
reach an optimal efficacy (39 waypoints). In other words, all methods fail to catch all
waypoints in at least one of the 200 matches played, which shows the complexity of
the game.

The efficiency of the controllers is calculated as the average of the efficency ra-
tio (time/waypoints) in those matches where all waypoints are visited. Figures 13
and 14 show these measurements for the Myopic and Stepping function evaluators
respectively. As explained in Section 8, this ratio can be misleading if the number of
waypoints visited is far from the amount of them in the maps. For this reason, the
macro-action length of 1 is not included in these pictures.

The ratios obtained (the smaller, the better) show again that MC and MCTS meth-
ods achieve better results than DFS, and these results are better when the length of the
macro-actions is high (10 to 20). However, as shown in Table 1, raising the value of
T to 30 provides significantly worse results. In the comparison between the Myopic
and Stepping function evaluators, better efficiency is obtained also with the Stepping
evaluator, and in this case the difference is more significant (about 30 points).

Table 1 shows the numeric results of the tests, for all configurations tested, includ-

20

1 5 10 15 20 30
Macro Action Length

0

5

10

15

20

25

30

35

40

45
W

a
y
p
o
in

t
v
is

it
s

Max. Avg. Number of Waypoints: 39

DFS

MC

MCTS

Figure 12: Number of waypoint visits with Stepping function evaluation and Nearest
Waypoint Now TSP solver.

ing the standard error of the averages obtained.
One point of interest is the ratio obtained when the length of the macro-action is 1:

four out of the six configurations are unable to provide reasonable results. Only MC
and MCTS, using the Stepping evaluator function, are able to visit at least once all the
waypoints scattered around the maps tested. Another interesting result is that MCTS
achieves the best performance for almost all combinations of macro-action length and
value function. MC only gets slightly better results in two cases: number of waypoints
visited, using Stepping function evaluator, for macro-action lengths of 15 and 20.

In many cases, the results obtained by each algorithm are very similar to each other.
For this reason, the Mann-Whitney-Wilcoxon test (MW-test) has been performed in or-
der to confirm if there is a statistical difference in those cases where the results are alike.
For the sake of space, not all MW-test results are included in this paper, but the most
interesting ones are explained here: the tests show that there is statistical difference
between MCTS and the other two methods for 15 and 20 macro-action lengths using
the Stepping evaluator (for T = 15, p-values of 0.109 and 0.001 against DFS and MC
respectively. 5× 10−6 and 1.5× 10−6 for T = 20). In other words, this suggests that
the lower ratio shown in Figure 14 responds to a truly better performance of MCTS
over MC and DFS in these cases. Regarding efficacy, these methods provide the same
results in the scenarios mentioned.

9.2 TSP Solvers
After the analysis performed in the previous section, some values for the parameters
tested are discarded in order to focus on those that provide better results. The goal at

21

5 10 15 20 30
Macro Action Length

60

80

100

120

140

160
R

a
ti

o

(t
im

e
/w

a
y
p
o
in

ts
)

DFS

MC

MCTS

Figure 13: Ratio time/waypoints with Myopic function evaluation and Nearest Way-
point Now TSP solver.

this stage is to evaluate how the different TSP solvers affect the controllers tested. In
this case, the parameters are configured as follows:

• Search method: DFS, MC or MCTS.

• Depth of simulations (D): 12, 8 and 6.

• Macro-action length (T): 10, 15 and 20.

• Function evaluator: only Stepping Evaluator.

Table 2 shows the results obtained with all TSP solvers and these parameters.
Several observations can be made about the performances shown in these tests.

First, the overall best TSP solver is the Physics Enabled Flood Fill Planner, obtaining
better performance in terms of waypoints visited and ratio of visits. This result confirms
the hypothesis drawn in Section 2.2: better performance is obtained when the physics
of the game are taken into consideration when planning the order of waypoints to visit.

For the best TSP planner, MCTS behaves better than both MC and DFS in the
two measures taken. Regarding the macro-action length, a value of 15 provides the
best result in ratio of waypoints visited, while 20 seems to be the best choice for the
efficacy of the controller. Actually, the controller that obtained first place in the PTSP
competition was the configuration using MCTS, Physics Enabled Flood Fill Planner
and T = 15.

Again, statistical tests have been calculated between the most interesting values.
For instance, Flood Fill Planner and Physics Enabled Flood Fill Planner have been

22

5 10 15 20 30
Macro Action Length

60

80

100

120

140

160
R

a
ti

o

(t
im

e
/w

a
y
p
o
in

ts
)

DFS

MC

MCTS

Figure 14: Ratio time/waypoints with Stepping function evaluation and Nearest Way-
point Now TSP solver.

compared for MCTS with T values of 15 and 20. The MW-Test provides values of
0.015 and 0.052, respectively, showing a high confidence in the case of T = 15 and
only a fair indication that the distributions are different for T = 20.

Another interesting result is that Nearest Waypoint Now solver seems to produce
better results than the planner version of the same algorithm. It can be surprising
that a planned route of waypoints behaves worse than a version that just pursues the
closest waypoint at any time, but the explanation is again in the physics of the game.
The Nearest Waypoint Now TSP solver only takes into account the distances between
waypoints, but ignores the inertia and speed of the ship while travelling around the
maze. This inertia could take the ship closer to another waypoint (which may not be
the next one to visit in the planned version) but obviously, it could be faster to visit
this one instead of changing the course to follow the plan. A better solution than the
one provided by the Nearest Waypoint Now solver is obtained with the Physics Enabled
Flood Fill Planner (80.10 versus 81.78, MW-test p-value of 3.07×10−5), using T = 15
which seems to be the best overall value for the macro-action length.

9.3 Analysis by map
An interesting comparison between the techniques presented in this paper is the map
by map comparative. It is possible that some methods behave better in distinct maps,
depending on how the obstacles are distributed around the maze.

A score system that stresses the differences between maps is the one used in the
PTSP Competition (see Section 2.3). This ranking scheme awards points for the rank-
ings on each of the maps where the controllers are evaluated. The final winner is the

23

DFS MC MCTS

T
Value

Function Myopic Stepping Myopic Stepping Myopic Stepping

1 Visits 2.48± 0.21 2.54± 0.19 5.58± 0.43 14.79±0.87 5.24± 0.47
15.10 ±

0.87

Ratio − − − 99.88±1.11 − 93.14 ±
0.29

5 Visits 14.87±0.67 19.17±0.72 30.79±0.98 35.23±0.79 30.64±1.01 35.76 ±
0.74

Ratio 149.50±
0.39

124.75±
1.02

126.10±
1.32

94.28±1.09 121.96±
1.05

91.43 ±
1.08

10 Visits 31.11±0.78 34.07±0.70 33.36±0.88 36.35±0.69 34.76±0.85 36.95 ±
0.65

Ratio 115.13±
1.03

84.50±0.96 117.08±
0.99

84.08±0.95 114.24±
0.86

83.00 ±
1.29

15 Visits 37.05±0.64 37.67±0.59 35.04±0.83 37.70 ±
0.59 36.84±0.67 37.69±0.60

Ratio 115.15±
1.26

84.27±1.41 115.36±
0.92

87.12±1.45 115.41±
1.02

81.78 ±
1.32

20 Visits 34.45±0.88 37.53±0.61 33.34±0.94 37.41 ±
0.62 36.36±0.69 37.77±0.60

Ratio 118.96±
0.85

93.12±1.79 118.96±
0.82

90.80±1.41 119.74±
1.03

82.82 ±
1.07

30 Visits 32.78±0.91 35.96±0.69 32.93±0.85 36.05±0.67 34.88±0.79 36.82 ±
0.66

Ratio 130.64±
0.95

101.17±
1.48

132.71±
1.31

99.09±1.31 139.4±1.20 98.08 ±
1.29

Table 1: Waypoint visits and ratio for different algorithms and macro-action lengths,
using Nearest Waypoint Now TSP solver. Showing average with standard error, bold
for best result in each row.

Nearest Waypoint Now Nearest Waypoint First Planner Flood Fill Planner Physics En. Flood Fill Planner
Method T Visits Ratio Visits Ratio Visits Ratio Visits Ratio

DFS
10 34.07±

0.70
84.50±
0.96

32.83±
0.84

88.89±
0.92

30.49±
0.99

90.90±
1.77

31.13±
1.10

84.72±
1.14

15 37.67±
0.59

84.27±
1.41

34.85±
0.87

97.61±
0.95

34.59±
0.88

88.33±
1.54

34.52±
0.85

85.54±
1.37

20 37.53±
0.61

93.12±
1.79

29.50±
1.10

106.55±
0.82

28.34±
1.06

89.55±
0.85

30.36±
1.08

89.61±
1.05

MC
10 36.35±

0.69
84.08±
0.95

33.65±
0.94

101.71±
0.93

27.91±
1.10

96.89±
1.05

30.80±
1.11

84.82±
0.96

15 37.70±
0.59

87.12±
1.45

34.54±
0.92

97.29±
0.86

29.89±
1.04

87.85±
0.79

32.02±
1.03

87.54±
1.00

20 37.41±
0.62

90.80±
1.41

33.09±
1.03

99.72±
0.91

28.87±
1.06

92.45±
1.02

30.32±
1.12

89.84±
1.07

MCTS
10 36.95±

0.65
83.00±
1.29

35.24±
0.82

92.52±
0.88

30.50±
1.06

86.86±
1.14

34.98±
0.91

80.74±
1.01

15 37.69±
0.60

81.78±
1.32

37.48±
0.64

87.76±
0.96

34.57±
0.93

82.84±
1.12

37.73±
0.65

80.10 ±
1.29

20 37.77±
0.60

82.82±
1.07

37.62±
0.63

92.36±
0.98

37.44±
0.69

92.02±
1.74

38.34 ±
0.62

89.11±
1.76

Average
37.01±
0.21

85.82±
0.53

34.31±
0.29

95.68±0.4
31.4±
0.33

89.46±
0.53

33.35±
0.32

85.56±
0.47

Table 2: Waypoint visits and ratio for the best macro-action lengths and Stepping eval-
uator, comparing all TSP solvers. Showing average with standard error, bold for overall
best result in visits and ratio.

controller that achieves more points in total. For every map, the points are awarded as
in the Formula One Championship: 25 points for the best controller, 18 points for the
second best, 15 for the third and 12, 10, 8, 6, 4, 2 and 1 for the bots ranking from fourth

24

to tenth, respectively. The distribution of points in this scheme highly awards the best
controller on each map.

Table 3 shows the points achieved in each map, following the PTSP competition
ranking scheme. The controllers shown are the ten best bots ranked this way. It is
interesting to see that the best controller is still the one submitted to the PTSP Compe-
tition that ranked first.

Controller vs. Map 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Total
MCTS-8-15-Stepping-

PEFF 25 25 25 6 25 4 25 18 25 18 18 10 25 25 18 25 25 0 25 2 369

MCTS-8-15-Stepping-
Near 15 15 4 25 15 18 0 12 10 4 6 25 12 8 6 15 8 8 2 25 233

MCTS-12-10-Stepping-
PEFF 18 18 18 0 18 0 18 8 18 25 25 2 0 1 0 18 18 0 0 6 211

MCTS-6-20-Stepping-
PEFF 0 8 15 0 6 0 15 4 12 12 12 1 18 6 0 12 15 25 18 0 179

MCTS-8-15-Stepping-
FFNP 10 0 8 10 2 6 12 15 4 6 8 0 10 15 25 8 4 0 0 0 143

MCTS-12-10-Stepping-
Near 2 6 6 18 8 25 0 0 0 0 0 15 15 0 2 2 6 0 6 18 129

DFS-4-15-Stepping-
PEFF 8 12 10 0 10 0 10 10 15 15 15 0 0 0 0 10 0 0 8 0 123

MCTS-6-20-Stepping-
Near 4 10 12 8 0 15 0 0 0 0 0 18 0 4 0 0 1 0 0 12 84

MC-12-10-Stepping-
PEFF 0 0 0 0 12 0 6 25 0 0 0 0 4 10 15 0 10 0 0 0 82

DFS-4-15-Stepping-
Near 1 2 0 12 1 8 0 0 0 8 0 6 0 0 10 4 0 0 10 15 77

Table 3: This table presents the rankings of the best controllers following the point
award scheme of the PTSP competition. It shows ten controllers (rows of the table)
evaluated on 20 maps (columns). The names of the controllers indicate (in this or-
der): method, number macro-actions, macro-action length, evaluation function and
TSP solver (FFNP: Flood Fill Planner; PEFF: Physics-Enabled Flood Fill Planner;
Near: Nearest Waypoint Now).

However, it is not able to achieve the best results in all maps: in map 18, it gets 0
points (note that this does not mean that it does not visit any waypoint. It is just worse
than the tenth controller in this particular map). The best result in this map is obtained
by the same algorithm but using T = 20 as macro-action length, which suggests that
for certain maps this parameter is crucial to obtain a good performance.

The PTSP Competition scheme favours those controllers that visit more waypoints,
with the time spent relegated as a tie breaker when the visits are the same. This is the
reason why in these rankings an algorithm that uses the Nearest Waypoint Now solver
qualifies second (as seen in Table 2, the efficacy of this TSP solver is high).

Figure 15 shows the waypoint ratios per map, which allows a comparison of the
efficiency of the different controllers. For the sake of clarity, this picture shows only
the best four controllers according to the rankings of this section. As can be seen,
the best approach generally needs less time steps to visit waypoints, while the second
controller often uses more time for this. Some exceptions are maps 4 and 6, where
the controller using the Nearest Waypoint Now solver provides better solutions. This is
strongly related to the results shown for these maps in Table 3, where the best controller
does not achieve the best performance.

Finally, maps 18 and 19 are missing some of the bars for some controllers. These
are the cases where the bots were not able to visit all waypoints in any of the matches
played in these maps, and therefore the ratio calculation is not very descriptive. In

25

these cases, the controllers achieved 0 points in the maps, as shown in Table 3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Map

0

50

100

150

200
R

a
ti

o
Ratio per map

MCTS-8-15-Stepping-PEFF
MCTS-8-15-Stepping-Near
MCTS-12-10-Stepping-PEFF
MCTS-6-20-Stepping-PEFF

Figure 15: Ratio time/waypoints per map. The smaller the bar, the faster the con-
troller visits waypoints. In maps 18 and 19, not all algorithms are able to reach all the
waypoints in any of the games played.

9.4 Performance in the PTSP Competition
As was mentioned before, the configuration that provided the best results in this study
(MCTS, T = 15, Stepping evaluator function and Physics Enabled Flood Fill Planner)
was the winner of the CIG PTSP Competition. It would be interesting to see if any of
the other configurations tested here would have won the competition anyway, using the
results obtained in this research. The reasoning behind this test is as follows: in many
competitions, the controllers and their heuristics are tweaked until they obtain the best
possible performance. One might question, therefore, whether the winner of this (or
any other) competition is providing a superior method, or only a very good heuristic
that could work with different AI techniques.

The document referenced at the beginning of Section 9 contains links to the po-
tential results that would have been obtained if each potential controller had been sub-
mitted instead of the one that was actually sent. The following lines summarize the
statistics drawn from these potential submissions:

• None of the controllers tested would have won the competition using the Myopic
function evaluator.

• Out of the configurations tested, all controllers which used the Physics Enabled
Flood Fill Planner would still have won the competition.

• Out of those controllers that used Flood Fill Planner (no physics), all but one
would have finished the competition in first place. Only MC with T = 10 would
not win, ranking second instead.

• Only the MCTS controllers that use the Nearest Waypoint Planner TSP solver
would have finished in first position in all cases tested.

• For the Nearest Waypoint Now TSP solver, only 14 out of 36 (38%) would still
win.

• In general, 38 out of the 63 different tests performed (60%) would have won the
competition.

26

Of course, these measures are illustrative, and they might well be different had the
other competitors submitted different controllers, but the test still allows the drawing of
some conclusions. For instance, these numbers suggest that MCTS, with the appropri-
ate evaluation function, is the best algorithm submitted so far to the PTSP competition.
The values of T to discard are 1, 5 and 30, but any of the other values (10, 15 and 20)
produce results that are good enough to win the competition.

10 Conclusions and Future Work
This paper presents a study of the algorithm that won the PTSP IEEE CIG 2012 com-
petition, some variations of it, and how the different values for the algorithm’s con-
stituents affect the overall performance of the controller. This performance is mea-
sured in terms of the efficacy (or how many waypoints are visited) and the efficiency
(the average time steps needed to visit waypoints) of the controllers.

One of the first conclusions that this study offers is the fact that using macro-actions
in the PTSP improves the quality of the solutions enormously. This is especially in-
teresting considering the rather simplistic repeat-T-times nature of the macro-actions
used. The macro-action lengths that provided good performance are values from 10 to
20, obtaining the best results with T = 15.

It is also worthwhile mentioning that the design of an appropriate value function,
especially for games like the PTSP where the real-time constraints usually prevent the
algorithm from reaching an end game state, is crucial in order to obtain good results.
In this particular case, a simple Myopic state evaluator behaves poorly compared with
a more sophisticated Stepping evaluator.

Another aspect highlighted in this paper is the dependency between the order of
waypoints and the driving style of the bot. In other words, how the physics of the
game affect the optimal sequence of waypoints to follow. It has been shown in the
results obtained that the TSP solver that considers the physics of the game achieves
significantly better results than the others.

Finally, MCTS has been shown to behave better than the other two algorithms
compared in this paper, MC and DFS. Of particular significance is the fact that any of
the MCTS variants tested in this research, using the Stepping evaluator function and
the appropriate macro-action lengths, would have won the CIG PTSP Competition.

This research can be extended in several ways. For instance, it would be interesting
to investigate how the shape of the maps affects the performance of the algorithms,
and under what specific conditions some macro-action lengths seem to work better.
Additionally, as exposed in this paper, the design of the macro-actions is just a simple
repetition of actions. It would be interesting to develop more sophisticated macro-
actions and compare their performance. Another possibility is to further improve the
algorithms presented: by looking at the results and games played, it is clear that the
performance is not optimal. Combining MCTS with other techniques, such as evolu-
tionary algorithms or TD-learning, could improve the results shown in this study.

Finally, another interesting test would be to reduce the time budget further and
test how this affects the quality of the solutions obtained. Initial experiments show
that at least MCTS still produces high quality solutions when the budget is reduced to
10ms. Nevertheless, further testing is needed to understand how this limitation affects
the search methods presented here, as well as finding the minimum budget time that
allows these techniques to keep providing good results in this and similar domains,
where decisions must be taken within a few milliseconds.

27

Acknowledgments
This work was supported by EPSRC grants EP/H048588/1 and EP/H049061/1, both
under the project entitled “UCT for Games and Beyond”.

References
[1] D. Perez, P. Rohlfshagen, and S. Lucas, “Monte Carlo Tree Search: Long Term

versus Short Term Planning,” in Proceedings of the IEEE Conference on Compu-
tational Intelligence and Games, 2012, pp. 219 – 226.

[2] R. Coulom, “Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search,” in Proc. 5th Int. Conference Comput. and Games, Turin, Italy, 2006,
pp. 72–83.

[3] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,” Euro Con-
ference in Machine Learning, vol. 4212, pp. 282–293, 2006.

[4] C.-S. Lee, M.-H. Wang, G. M. J.-B. Chaslot, J.-B. Hoock, A. Rimmel, O. Tey-
taud, S.-R. Tsai, S.-C. Hsu, and T.-P. Hong, “The Computational Intelligence of
MoGo Revealed in Taiwan’s Computer Go Tournaments,” IEEE Transacttions on
Computational Intelligence and AI in Games, vol. 1, no. 1, pp. 73–89, 2009.

[5] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A Survey of Monte Carlo
Tree Search Methods,” IEEE Transactions on Computational Intelligence and AI
in Games, vol. 4:1, pp. 1–43, 2012.

[6] S. Samothrakis, D. Robles, and S. M. Lucas, “A UCT Agent for Tron: Initial In-
vestigations,” in Proceedings of IEEE Symposium on Computational Intelligence
and Games, Ireland, 2010, pp. 365–371.

[7] N. G. P. D. Teuling and M. H. M. Winands, “Monte-Carlo Tree Search for the
Simultaneous Move Game Tron,” in Computer Games Workshop at ECAI, Mont-
pellier, France, 2012, pp. 126–141.

[8] N. Ikehata and T. Ito, “Monte-Carlo Tree Search in Ms. Pac-Man,” in Proceedings
of IEEE Conference on Computational Intelligence and Games, 2011, pp. 39–46.

[9] C. Zhongjie, D. Zhang, and B. Nebel, “Playing Tetris Using Bandit-Based Monte-
Carlo Planning,” in Proceedings of AISB 2011 Symposium: AI and Games, 2011,
pp. 18–23.

[10] D. Perez, P. Rohlfshagen, and S. Lucas, “Monte-Carlo Tree Search for the Physi-
cal Travelling Salesman Problem,” in Proceedings of EvoApplications, 2012, pp.
255–264.

[11] E. J. Powley, D. Whitehouse, and P. I. Cowling, “Monte Carlo Tree Search with
macro-actions and heuristic route planning for the Physical Travelling Salesman
Problem,” in Proceedings of IEEE Conference on Computational Intelligenece
and Games, Spain, 2012, pp. 234–241.

28

[12] A. McGovern and R. S. Sutton, “Macro-actions in reinforcement learning: an em-
pirical analysis,” The University of Massachusetts - Amherst, Tech. Rep., 1998.

[13] S. Ontañón, “Experiments with game tree search in real-time strategy games,”
CoRR, vol. abs/1208.1940, 2012.

[14] R.-K. Balla and A. Fern, “UCT for Tactical Assault Planning in Real-Time Strat-
egy Games,” in Proceedings of the 21st International Joint Conference on Artifi-
cial Intelligence., 2009, pp. 40–45.

[15] B. E. Childs, J. H. Brodeur, and L. Kocsis, “Transpositions and Move Groups in
Monte Carlo Tree Search,” in Proceedings of IEEE Symposium on Computational
Intelligence and Games, 2008, pp. 389–395.

[16] G. Van Eyck and M. Müller, “Revisiting move groups in monte-carlo tree search,”
Advances in Computer Games, pp. 13–23, 2012.

[17] E. J. Powley, D. Whitehouse, and P. I. Cowling, “Determinization in Monte-Carlo
Tree Search for the card game Dou Di Zhu,” in Proceedings Artificial Intelligence
and the Simulation of Behaviour, York, United Kingdom, 2011, pp. 17–24.

[18] D. Perez, P. Rohlfshagen, and S. Lucas, “The Physical Travelling Salesman Prob-
lem: WCCI 2012 Competition,” in Proceedings of the IEEE Congress on Evolu-
tionary Computation, 2012.

[19] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the Multiarmed
Bandit Problem,” Mach. Learn., vol. 47, no. 2, pp. 235–256, 2002.

[20] L. Kocsis, C. Szepesvári, and J. Willemson, “Improved Monte-Carlo Search,”
Univ. Tartu, Estonia, Tech. Rep. 1, 2006.

[21] H. Lieberman, “How to color in a coloring book,” ACM SIGGRAPH Computer
Graphics, vol. 12, no. 3, pp. 111–116, 1978.

[22] J. L. Bentley, “Experiments on Traveling Salesman Heuristics,” in Proceedings of
the 1st Annual ACM-SIAM Symposium on Discrete Algorithms, 1990, pp. 91–99.

[23] S. Lin, “Computer solutions of the traveling salesman problem,” Bell System
Technical Journal, vol. 44, pp. 2245–2269, 1965.

[24] D. S. Johnson and L. A. McGeoch, The Traveling Salesman Problem: A Case
Study in Local Optimization. John Wiley and Sons, Ltd., 1997.

[25] G. Snook, “Simplified 3D Movement and Pathfinding Using Navigation Meshes,”
in Game Programming Gems. Charles River Media, 2000, pp. 288–304.

29

Algorithm 1 Scanline flood fill algorithm for computing distance maps. For concise-
ness, array bound checks are omitted.

1: function COMPUTEDISTANCEMAP(M,x0, y0)
2: create a 2-D array D with the same dimensions as M
3: for each coordinate pair (x, y) in the map do
4: if M [x, y] is a wall, or M [x± i, y] then
5: D[x, y]← −∞
6: else if ∃i, 0 < i ≤ rship :M [x, y ± i] is a wall then
7: D[x, y]← −∞
8: else if x = x0 and y = y0 then
9: D[x, y]← 0

10: else
11: D[x, y]← +∞
12: create a queue q, and push (x0, y0) onto it
13: while q is not empty do
14: pop (x, y) from q
15: if ISFILLABLE(x, y) then
16: D[x, y]← MINDIST(x, y)
17: if ISFILLABLE(x, y − 1) then
18: push (x, y − 1) onto q
19: if ISFILLABLE(x, y + 1) then
20: push (x, y + 1) onto q
21: SCAN(x, y,−1)
22: SCAN(x, y,+1)

23: return D

24: function SCAN(x, y, δ)
25: for x′ = x+ δ, x+ 2δ, x+ 3δ, . . . do
26: if ISFILLABLE(x′, y) then
27: D[x′, y]← MINDIST(x′, y)
28: if ISFILLABLE(x′, y − 1)∧
29: ¬ISFILLABLE(x′ − δ, y − 1) then
30: push (x′, y − 1) onto q
31: if ISFILLABLE(x′, y + 1)∧
32: ¬ISFILLABLE(x′ − δ, y + 1) then
33: push (x′, y + 1) onto q

34: function MINDIST(x, y)
35: η ← {(x′, y′) : x′ ∈ {x− 1, x, x+ 1} ,
36: y′ ∈ {y − 1, y, y + 1} , (x′, y′) 6= (0, 0)}
37: return min

(x′,y′)∈η
D[x′,y′]>−∞

D[x′, y′] +
√
(x′ − x)2+(y′ − y)2

30

