
Evolving Source Code: Object Oriented Genetic

Programming in .NET Core

John Speakman1

Abstract. Object Oriented Genetic Programming (OOGP) is a

method of Genetic Programming (GP) which gives access to

standard language libraries, iteration and object-oriented method

calls. The implementation of OOGP in this paper shows the

automatic generation of retrievable C# files, following standard

C# coding conventions with potential access to the entire C#

library, derived from a genetic sequence. This new

implementation utilises .net Core Roslyn, using reflection, which

allows for retrievable, runtime execution and unloading of

dynamically generated C# files with scope control in a modern

server environment. Experiments were performed on unit tests to

validate the algorithms ability to solve simple programming tasks

and generate functional, plain text code.

This is a new prototype designed to eventually act as the main

Artificial Intelligence controller for a novel, behaviourally

adaptive, Artificial-Life simulation. The design taken in the

development of this algorithm stems from a requirement for a high

potential variation in behaviour, processing efficiency in a server

environment per iteration through generated code and low a

minimal number of generations.

1 INTRODUCTION

The ability for an AI to generate, execute and evolve source code

allows the potential search space of an AI to be as broad as that of

a human programmer. With a broad search space comes the

potential for highly dynamic, adaptive behaviour, through

evolution, which may be applied directly as behaviour controllers

for agents in games and Artificial Life environments.

This paper proposes a Template-Based Genetic Programming

prototype, a novel solution to evolve, execute and output plain text

code following standard C# coding conventions [1] with dynamic

variables and scope handling. This also opens the plausibility of

integrating automatic solutions to simple coding problems into

future programming paradigms.

A group of genetically varied agents with the ability to

reproduce against a fitness function (a quantified assessment of

individual agents) will, given the right parameters, trend towards

a solution which optimises their fitness score. If the agents are the

body of a source code file and the fitness of agents is derived from

unit tests (where the output from a method, when given a pre-

defined input, is compared to a pre-defined, expected output), we

can generate code which automatically solves simple coding

problems. These automatically generated files can be used directly

in other C# projects or re-used, through reflection, in the same

project in which they were generated.

1 Games Academy, Falmouth University, TR10 9FE, UK. Email:
John.Andrew.Speakman@Falmouth.ac.uk

Koza [2]’s Genetic Programming introduced the first model for

the use of a genetic sequence to construct a computer program.

These early forms of GP used simple expression trees, though

further exploration into Object Oriented program space indicated

that an Object-Oriented approach can provide significant benefits

in comparison with grammar-based systems [3]–[6]: improved

performance, direct use of class libraries, iteration, object state,

generation of reusable, callable classes, sub-classing existing

classes.

To expand potential functionality, this algorithm also permits

dynamic variable creation and re-use, using a push/pop Stack,

roughly translating to the indentation level in source code,

allowing more modular, in-method code. Alternative approaches

have been taken for stack-based GP [7], [8], which demonstrated

the benefits from the efficiency, simplicity and manipulation of

modular architectures introduced using this approach, though had

not been used for object oriented scope control or source code

generation.

This project is built for ASP.NET Core 3.0, a modern,

lightweight, cross-platform framework, compatible with

multithreaded server environments, which fully support C#.

Some aspects of the architecture in this approach are taken

from Template Based Evolution (TBE) [9], [10], an artificial life

algorithm for rapid evolution of subsumption architectures, using

a genetic algorithm. Of particular interest from this method is the

use of evolving variables through a genome which execute into a

template. This simulation varies from TBE, as it dynamically

constructs new templates, using smaller templates, into source

code from a genetic sequence at run time, where TBE builds into

a pre-existing template.

2 AUTOMATIC CODE CONSTRUCTION &

EXECUTION

The approach to code generation taken in this paper uses pre-

defined templates, which build single lines of code from a list of

numeric values. Each line of code takes 3 inputs: the first input is

used as a reference to a table of single line templates, which

constitute the functionality and body of the code. The second and

third inputs are used as values in those lines of code and may be

used, non-exhaustively, as a value, variable, or function call.

Generation of reusable variables, scope and code indentation

are handled by a push/pop stack: the code constructor accounts for

lines which increment and decrement scope, where variables

whose associated scope is pushed out of the current stack get

removed from the available list of variables. If the genetic

sequence terminates without resolving scope, scope is then

automatically resolved. This allows the use of more complex code

structures, such as loops and if statements.

Code Excerpt 1 demonstrates the use of the push/pop stack to

dictate which automatically generated variables (output, A, B, C

etc.) are eligible for use by the next line of code. The colour and

indentation depth indicate the depth within the stack which each

line of source code applies to.

This generated code is then wrapped with the applicable

namespaces. At this point, the code may be returned as a

syntactically correct .cs source code file or run through a

compiler.

In order to execute this file in the same application it was

generated, the code is compiled, at runtime. By using the C# .NET

Compiler Platform “Roslyn”[11] code analysis package, an

intermediate compilation object, “an immutable representation of

a single invocation of the compiler”[12], may be generated from

the source code. This compilation object is then emitted using

reflection, which builds the object as a collectible[13], in-memory

Dynamically Linked Library (DLL) directly into a memory

stream, which allows the DLL to be unloaded directly, freeing

memory and removing the need to store a physical DLL on the

drive. Reflection is used to obtain the MethodInfo[14], a class

which provides access to a methods metadata, used here to call the

method, for any method in the generated assembly. This may then

be stored in an array of delegates, so the method may be called

without needing to implement reflection on any future call to the

method, significantly reducing call time[15].

3 GENETIC ALGORITHM

Multiple variables per codon are necessary to handle

automatically assigned variables properly: building a single line

of code using this code constructor takes up to 3 arguments, giving

a requirement for the genetic sequence to fit a 3 x N matrix.

The first value, used to determine the main template, selects

against a weighting matrix for the likelihood of each template

being relevant (for example, an addition call may be much higher

frequency than a cosine call). This value has a lower mutation

likelihood than the other two values in the codon, as its impact on

mutation is significantly greater.

 The two other values in the codon are numeric and assume the

frequency in code to favour low integers, especially 2 and 3,

though with a lower probability of calling 1. The formula used in

this model is:

y = (1000 / (1+x/10))-9

The algorithm proposed in this paper assumes that the varying

depth of scope has a similar effect to positional depth in grammar

trees. Applying crossover and mutation at greater depth in

grammar trees shows to have a higher likelihood, per mutation, of

producing beneficial effects on fitness with a reduced likelihood

of detrimental effect [16]. Replicating this, mutation may be

applied proportionally to the push/pop stack depth. Crossover may

be applied on a similar basis, increasing likelihood of crossover

proportional to depth.

Due to the use of a genetic sequence, most standard genetic

algorithm functions may be applied: mutation, injection, removal,

etc.. Chromosomal block structures may also be implemented,

using functions within a class as a chromosome with

independently generated code, which can call other functions,

even those within the same automatically generated file. While

not yet tested, the introduction of these mechanisms is expected

to, on average, significantly improve the diversity and fitness of

agents over multiple generations.

As this system was intended to support an Artificial Life

simulation, with an implicit fitness function, the algorithm can

breed individuals on demand, rather than requiring distinct

generational batch breeding (though batch breeding can still be

applied). This would allow agents to breed based on their current

state, independent of other agents or timeframes, where breeding

becomes bound to the agent’s ability to survive and breed

naturally within their environment.

4 IMPLEMENTATION

This project is currently early in development, being at the first

stage capable of producing measurable results. As this is an early

prototype, many of the proposed systems have not yet been

implemented and the full potential of a complete solution is yet to

be explored.

The tested solution runs on a .NET Core, multithreaded

environment, with the intention of optimising the number of

simultaneous calls to dynamically generated code in an

asynchronous environment. This implementation was built to

complete simple unit tests, where input(s) were automatically

passed to the function, and the resultant outputs were compared

against a pre-defined value. The fitness function assessed the

number of unit tests which matched this value and, where there

was no perfect match, the difference between outputs and that

value, generating an associated score with an emphasis on perfect

matches.

For these tests, only simple random mutation was

implemented, constructing each new generation by duplicating

the best agent from the previous generation with random

mutation.

As a prototype, the number of defined templates available to

the simulation is very low, currently only accessing simple maths

Excerpt 1. Scope controller stack displaying accessible

variables per line of output code

and mathematical comparisons. Similarly, a weighting matrix

against the relevancy of templates is also still not yet

implemented. The direct effect will have severely increased the

likelihood of detrimental mutation and resulted in a generally

lower fitness per generation. The fitness function may also be

extended to reward through fitness score, reduced length of code

and execution time, increasing performance over time.

Even with this simple implementation, we can achieve

successful completion of simple unit tests, showing identifiable

improvement per generation.

For the following simulations, all agents worked with a pre-set

number of lines of code, though potential improvements are

expected from injection and removal of code in later simulations.

Results from simple tests, with simple problems, indicated a low

number of lines tends to solve unit tests in a lower number of

generations. Simple unit tests, for example, attempting to divide

or multiply by 2, were often completed within the first generation

and high complexity tests are yet to be applied.

The following results, shown in Figure 1, show 5 simulations,

each with 100 agents over 20 generations, attempting to generate

the value 1457 when given an input of 100. Agent fitness above

0.8 is within 0.01 of the correct output.

Figure 1. Graph of Fitness / generation for 5 simulations

Code Excerpt 2 displays the generated code output from the

highest scoring agent from one of the simulations, with fitness

>0.8. The sections in Grey represent the main body of the evolved

code. The section in green is an automatically generated end of

file scope termination. Sections in blue are a wrapper, with

namespaces, to generate a syntactically correct .cs file. To verify

the code’s validity, this code was exported into a separate C#

project where it compiled and executed successfully.

This simulation was set to output, per agent, every generation,

a C# file with 15 lines of code in the function body. The output

displayed above only utilised 7 of these lines, indicating the

liability to create junk code and emphasizing the importance of

genetic removal and dynamic genetic sequence lengths, as seen

frequently in GP [17].

While subject to substantial change with further development,

some simple, preliminary performance tests have been

performed2. To generate, build and execute a MethodInfo class

from a file with a single line of code in the function body took, on

average, 16.5ms and accessing this class from a delegate took on

average 7e-4ms. While solving a simple unit test, the application

took 25 seconds to generate, build, execute, breed and display 10

generations of agents, with 100 agents per generation. No

significant change to performance was noticed when varying the

2 Testing on localhost IIS Express 10, i7-7700HQ

number of lines of code in the function body between 5 and 30

lines, per agent. All tests test resolved and executed correctly,

including a larger experiment generating 10,000 agents, each

building 300 lines of code.

Excerpt 2. Example output code,

 output when input is 100: 1456.897

5 CONCLUSIONS

The prototype implemented in this paper successfully generated,

executed and returned syntactically correct C# files with potential

access to the entire available C# library. These tests successfully

implemented dynamic scope and variable control, with the ability

to automatically generate new variables and restrict their

application to within their local scope.

Through simple best-agent mutation over multiple generations,

where each generation produces, compiles and executes a new

group of C# files, this algorithm successfully completed multiple

simple unit tests and returned the solution as a file automatically.

All generated files executed without runtime or compilation

issues, both within the live server environment in which they were

constructed and, using the output source code, independently in

other C# environments. Efficiency of execution when calling

generated files is also promising, as they can be called using

delegates.

using System;
using System.IO;
namespace RoslynCore
{
 public static class AutoCode
 {
 public static double FunctionA(double output)
 {
 output += Math.Cos(20);
 output = output;
 if (output > 5)
 {
 output += 18;
 double A = output;
 A = output * 67;
 output += 3;
 output = 12 * output;
 if (output < 27) {
 output = output * 6;
 if (output !=0)
 output = output / 6;
 output += 51;
 output = Math.Pow(output, 16);
 output = A;
 }
 }
 return output;
 }
 }
}

6 FUTURE WORK

The genetic algorithm and breeding functions for this system are

still in progress with the anticipation of greatly improved

performance per generation. Following this, a more robust

benchmark showing the full extent of the capability and impact of

automatic, plain text source code generation is to be carried out.

Further research is also required to statistically determine the

distribution of common lines of source code, in order to produce

an optimal template selection weighting matrix.

This algorithm was designed with the intention of eventually

acting as the behavioural controller for a server-based Artificial

life simulation. This is intended for use by multiple simultaneous,

geographically distributed users in a co-creative, modifiable

virtual environment, bringing an emphasis on reducing the

runtime processing requirements while maximising the quality of

behavioural output on a server framework.

The client-side application for this model is intended for

mobile and mixed reality devices, with an initial benchmark for

the HoloLens. Continuing work in this direction will breed virtual

agents in a virtual environment, using an implicit fitness function

dictated by natural selection, rather than an explicit unit test.

These agents will need to adapt to indirect human interaction,

where users will modify the geometry and interactable objects

within the virtual environment, directly impacting the

survivability and implicit fitness function of agents. This

introduces the need for further optimisations between software

efficiency, speed of adaption and adaptive potential in

development of the evolutionary algorithm.

When dealing with behaviour controllers for human interaction

with this algorithm, a pre-defined genetic sequence which

constructs a common behaviour may be implemented. For

example, an initial BOID [18] template could be recreated using

a manually entered genetic sequence, removing the need for an

early, low functionality, high failure rate species. This initial

functionality may then be mutated and expanded through adaptive

evolution, where dynamic code generation permits absolute

modification of behaviour from that point forward.

Alternative development outside of Artificial Life could see

this algorithm being used as an alternative solution to common GP

problems, particularly where the output is intended for human

interpretation. It may also be used to approximate solutions or

solve simple programming tasks in everyday programming,

forming the basis of a form of pair programming between a human

and an AI with integration into an IDE, where the human acts to

guide the AI by outlining the required functionality.

REFERENCES

[1] BillWagner, “C# Coding Conventions - C# Programming Guide.”

[Online]. Available: https://docs.microsoft.com/en-
us/dotnet/csharp/programming-guide/inside-a-program/coding-

conventions. [Accessed: 19-Feb-2019].

[2] J. R. Koza, Genetic programming: on the programming of
computers by means of natural selection. Cambridge, Mass: MIT

Press, 1992.

[3] A. Agapitos and S. M. Lucas, “Evolving a Statistics Class Using
Object Oriented Evolutionary Programming,” in EuroGP, 2007.

[4] W. S. Bruce, “Automatic Generation of Object-oriented Programs

Using Genetic Programming,” in Proceedings of the 1st Annual
Conference on Genetic Programming, Cambridge, MA, USA,

1996, pp. 267–272.

[5] S. Ventura, C. Romero, A. Zafra, J. A. Delgado, and C. Hervás,

“JCLEC: a Java framework for evolutionary computation,” Soft

Comput., vol. 12, no. 4, pp. 381–392, Oct. 2007.
[6] R. Abbott, “Object-oriented genetic programming, an initial

implementation,” in in International Conference on Machine

Learning: Models, Technologies and Applications, 2003, 2003, pp.
26–30.

[7] T. Perkis, “Stack-Based Genetic Programming,” in International

Conference on Evolutionary Computation, 1994.
[8] L. Spector, J. Klein, and M. Keijzer, “The Push3 execution stack

and the evolution of control,” in Proceedings of the 2005

conference on Genetic and evolutionary computation - GECCO
’05, Washington DC, USA, 2005, p. 1689.

[9] C. J. Headleand and W. J. Teahan, “Template Based Evolution,” in

Proceedings of the 15th Annual Conference Companion on
Genetic and Evolutionary Computation, New York, NY, USA,

2013, pp. 1383–1390.

[10] Bangor University, Wales, UK, C. Headleand, L. Cenydd, and W.
Teahan, “Berry Eaters: Learning Color Concepts with Template

Based Evolution,” in Artificial Life 14: Proceedings of the

Fourteenth International Conference on the Synthesis and
Simulation of Living Systems, 2014, pp. 473–480.

[11]. “NET Core - Cross-Platform Code Generation with Roslyn and

.NET Core.” [Online]. Available: https://msdn.microsoft.com/en-
us/magazine/mt808499.aspx. [Accessed: 21-Jan-2019].

[12] “Compilation.cs.” [Online]. Available:

http://source.roslyn.codeplex.com/#Microsoft.CodeAnalysis/Comp
ilation/Compilation.cs,ec43f5a2c70b26f1. [Accessed: 04-Apr-

2019].

[13] “Collectible assemblies in .NET Core 3.0 | StrathWeb. A free
flowing web tech monologue.” .

[14] rpetrusha, “MethodInfo Class (System.Reflection).” [Online].

Available: https://docs.microsoft.com/en-
us/dotnet/api/system.reflection.methodinfo. [Accessed: 21-Feb-

2019].

[15] rpetrusha, “Emitting Dynamic Methods and Assemblies.” [Online].
Available: https://docs.microsoft.com/en-

us/dotnet/framework/reflection-and-codedom/emitting-dynamic-

methods-and-assemblies. [Accessed: 27-Feb-2019].

[16] T. Castle and C. G. Johnson, “Positional Effect of Crossover and

Mutation in Grammatical Evolution,” in Genetic Programming,
2010, pp. 26–37.

[17] C. Ryan, J. Collins, and M. O. Neill, “Grammatical evolution:

Evolving programs for an arbitrary language,” in Genetic
Programming, vol. 1391, W. Banzhaf, R. Poli, M. Schoenauer, and

T. C. Fogarty, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

1998, pp. 83–96.
[18] C. W. Reynolds, “Flocks, Herds and Schools: A Distributed

Behavioral Model,” in Proceedings of the 14th Annual Conference

on Computer Graphics and Interactive Techniques, New York,
NY, USA, 1987, pp. 25–34.

