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Abstract.  Object Oriented Genetic Programming (OOGP) is a 

method of Genetic Programming (GP) which gives access to 

standard language libraries, iteration and object-oriented method 

calls. The implementation of OOGP in this paper shows the 

automatic generation of retrievable C# files, following standard 

C# coding conventions with potential access to the entire C# 

library, derived from a genetic sequence. This new 

implementation utilises .net Core Roslyn, using reflection, which 

allows for retrievable, runtime execution and unloading of 

dynamically generated C# files with scope control in a modern 

server environment. Experiments were performed on unit tests to 

validate the algorithms ability to solve simple programming tasks 

and generate functional, plain text code.  

This is a new prototype designed to eventually act as the main 

Artificial Intelligence controller for a novel, behaviourally 

adaptive, Artificial-Life simulation. The design taken in the 

development of this algorithm stems from a requirement for a high 

potential variation in behaviour, processing efficiency in a server 

environment per iteration through generated code and low a 

minimal number of generations. 

1 INTRODUCTION 

The ability for an AI to generate, execute and evolve source code 

allows the potential search space of an AI to be as broad as that of 

a human programmer. With a broad search space comes the 

potential for highly dynamic, adaptive behaviour, through 

evolution, which may be applied directly as behaviour controllers 

for agents in games and Artificial Life environments.  

This paper proposes a Template-Based Genetic Programming 

prototype, a novel solution to evolve, execute and output plain text 

code following standard C# coding conventions [1] with dynamic 

variables and scope handling. This also opens the plausibility of 

integrating automatic solutions to simple coding problems into 

future programming paradigms. 

A group of genetically varied agents with the ability to 

reproduce against a fitness function (a quantified assessment of 

individual agents) will, given the right parameters, trend towards 

a solution which optimises their fitness score. If the agents are the 

body of a source code file and the fitness of agents is derived from 

unit tests (where the output from a method, when given a pre-

defined input, is compared to a pre-defined, expected output), we 

can generate code which automatically solves simple coding 

problems. These automatically generated files can be used directly 

in other C# projects or re-used, through reflection, in the same 

project in which they were generated. 
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Koza [2]’s Genetic Programming introduced the first model for 

the use of a genetic sequence to construct a computer program. 

These early forms of GP used simple expression trees, though 

further exploration into Object Oriented program space indicated 

that an Object-Oriented approach can provide significant benefits 

in comparison with grammar-based systems [3]–[6]: improved 

performance, direct use of class libraries, iteration, object state, 

generation of reusable, callable classes, sub-classing existing 

classes. 

To expand potential functionality, this algorithm also permits 

dynamic variable creation and re-use, using a push/pop Stack, 

roughly translating to the indentation level in source code, 

allowing more modular, in-method code. Alternative approaches 

have been taken for stack-based GP [7], [8], which demonstrated 

the benefits from the efficiency, simplicity and manipulation of 

modular architectures introduced using this approach, though had 

not been used for object oriented scope control or source code 

generation. 

This project is built for ASP.NET Core 3.0, a modern, 

lightweight, cross-platform framework, compatible with 

multithreaded server environments, which fully support C#. 

Some aspects of the architecture in this approach are taken 

from Template Based Evolution (TBE) [9], [10], an artificial life 

algorithm for rapid evolution of subsumption architectures, using 

a genetic algorithm. Of particular interest from this method is the 

use of evolving variables through a genome which execute into a 

template. This simulation varies from TBE, as it dynamically 

constructs new templates, using smaller templates, into source 

code from a genetic sequence at run time, where TBE builds into 

a pre-existing template. 

2 AUTOMATIC CODE CONSTRUCTION & 

EXECUTION 

The approach to code generation taken in this paper uses pre-

defined templates, which build single lines of code from a list of 

numeric values. Each line of code takes 3 inputs: the first input is 

used as a reference to a table of single line templates, which 

constitute the functionality and body of the code. The second and 

third inputs are used as values in those lines of code and may be 

used, non-exhaustively, as a value, variable, or function call.  

Generation of reusable variables, scope and code indentation 

are handled by a push/pop stack: the code constructor accounts for 

lines which increment and decrement scope, where variables 

whose associated scope is pushed out of the current stack get 

removed from the available list of variables. If the genetic 

sequence terminates without resolving scope, scope is then 



automatically resolved. This allows the use of more complex code 

structures, such as loops and if statements. 

Code Excerpt 1 demonstrates the use of the push/pop stack to 

dictate which automatically generated variables (output, A, B, C 

etc.) are eligible for use by the next line of code. The colour and 

indentation depth indicate the depth within the stack which each 

line of source code applies to. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This generated code is then wrapped with the applicable 

namespaces. At this point, the code may be returned as a 

syntactically correct .cs source code file or run through a 

compiler.  

In order to execute this file in the same application it was 

generated, the code is compiled, at runtime. By using the C# .NET 

Compiler Platform “Roslyn”[11] code analysis package, an 

intermediate compilation object, “an immutable representation of 

a single invocation of the compiler”[12], may be generated from 

the source code. This compilation object is then emitted using 

reflection, which builds the object as a collectible[13], in-memory 

Dynamically Linked Library (DLL) directly into a memory 

stream, which allows the DLL to be unloaded directly, freeing 

memory and removing the need to store a physical DLL on the 

drive. Reflection is used to obtain the MethodInfo[14], a class 

which provides access to a methods metadata, used here to call the 

method, for any method in the generated assembly. This may then 

be stored in an array of delegates, so the method may be called 

without needing to implement reflection on any future call to the 

method, significantly reducing call time[15]. 

3 GENETIC ALGORITHM 

Multiple variables per codon are necessary to handle 

automatically assigned variables properly: building a single line 

of code using this code constructor takes up to 3 arguments, giving 

a requirement for the genetic sequence to fit a 3 x N matrix. 

The first value, used to determine the main template, selects 

against a weighting matrix for the likelihood of each template 

being relevant (for example, an addition call may be much higher 

frequency than a cosine call). This value has a lower mutation 

likelihood than the other two values in the codon, as its impact on 

mutation is significantly greater.  

 The two other values in the codon are numeric and assume the 

frequency in code to favour low integers, especially 2 and 3, 

though with a lower probability of calling 1. The formula used in 

this model is:  

y = (1000 / (1+x/10))-9 

 

The algorithm proposed in this paper assumes that the varying 

depth of scope has a similar effect to positional depth in grammar 

trees. Applying crossover and mutation at greater depth in 

grammar trees shows to have a higher likelihood, per mutation, of 

producing beneficial effects on fitness with a reduced likelihood 

of detrimental effect [16]. Replicating this, mutation may be 

applied proportionally to the push/pop stack depth. Crossover may 

be applied on a similar basis, increasing likelihood of crossover 

proportional to depth.  

Due to the use of a genetic sequence, most standard genetic 

algorithm functions may be applied: mutation, injection, removal, 

etc.. Chromosomal block structures may also be implemented, 

using functions within a class as a chromosome with 

independently generated code, which can call other functions, 

even those within the same automatically generated file. While 

not yet tested, the introduction of these mechanisms is expected 

to, on average, significantly improve the diversity and fitness of 

agents over multiple generations. 

As this system was intended to support an Artificial Life 

simulation, with an implicit fitness function, the algorithm can 

breed individuals on demand, rather than requiring distinct 

generational batch breeding (though batch breeding can still be 

applied). This would allow agents to breed based on their current 

state, independent of other agents or timeframes, where breeding 

becomes bound to the agent’s ability to survive and breed 

naturally within their environment. 

4 IMPLEMENTATION 

This project is currently early in development, being at the first 

stage capable of producing measurable results. As this is an early 

prototype, many of the proposed systems have not yet been 

implemented and the full potential of a complete solution is yet to 

be explored. 

The tested solution runs on a .NET Core, multithreaded 

environment, with the intention of optimising the number of 

simultaneous calls to dynamically generated code in an 

asynchronous environment. This implementation was built to 

complete simple unit tests, where input(s) were automatically 

passed to the function, and the resultant outputs were compared 

against a pre-defined value. The fitness function assessed the 

number of unit tests which matched this value and, where there 

was no perfect match, the difference between outputs and that 

value, generating an associated score with an emphasis on perfect 

matches. 

For these tests, only simple random mutation was 

implemented, constructing each new generation by duplicating 

the best agent from the previous generation with random 

mutation. 

As a prototype, the number of defined templates available to 

the simulation is very low, currently only accessing simple maths 

 
 

Excerpt 1. Scope controller stack displaying accessible 

variables per line of output code 

 



and mathematical comparisons. Similarly, a weighting matrix 

against the relevancy of templates is also still not yet 

implemented. The direct effect will have severely increased the 

likelihood of detrimental mutation and resulted in a generally 

lower fitness per generation. The fitness function may also be 

extended to reward through fitness score, reduced length of code 

and execution time, increasing performance over time.  

Even with this simple implementation, we can achieve 

successful completion of simple unit tests, showing identifiable 

improvement per generation. 

For the following simulations, all agents worked with a pre-set 

number of lines of code, though potential improvements are 

expected from injection and removal of code in later simulations. 

Results from simple tests, with simple problems, indicated a low 

number of lines tends to solve unit tests in a lower number of 

generations. Simple unit tests, for example, attempting to divide 

or multiply by 2, were often completed within the first generation 

and high complexity tests are yet to be applied. 

The following results, shown in Figure 1, show 5 simulations, 

each with 100 agents over 20 generations, attempting to generate 

the value 1457 when given an input of 100. Agent fitness above 

0.8 is within 0.01 of the correct output.  

 

 
Figure 1. Graph of Fitness / generation for 5 simulations 

 

Code Excerpt 2 displays the generated code output from the 

highest scoring agent from one of the simulations, with fitness 

>0.8. The sections in Grey represent the main body of the evolved 

code. The section in green is an automatically generated end of 

file scope termination. Sections in blue are a wrapper, with 

namespaces, to generate a syntactically correct .cs file. To verify 

the code’s validity, this code was exported into a separate C# 

project where it compiled and executed successfully. 

This simulation was set to output, per agent, every generation, 

a C# file with 15 lines of code in the function body. The output 

displayed above only utilised 7 of these lines, indicating the 

liability to create junk code and emphasizing the importance of 

genetic removal and dynamic genetic sequence lengths, as seen 

frequently in GP [17]. 

While subject to substantial change with further development, 

some simple, preliminary performance tests have been 

performed2. To generate, build and execute a MethodInfo class 

from a file with a single line of code in the function body took, on 

average, 16.5ms and accessing this class from a delegate took on 

average 7e-4ms. While solving a simple unit test, the application 

took 25 seconds to generate, build, execute, breed and display 10 

generations of agents, with 100 agents per generation. No 

significant change to performance was noticed when varying the 
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number of lines of code in the function body between 5 and 30 

lines, per agent. All tests test resolved and executed correctly, 

including a larger experiment generating 10,000 agents, each 

building 300 lines of code. 

 

 

Excerpt 2. Example output code, 

 output when input is 100: 1456.897 

 

5 CONCLUSIONS  

The prototype implemented in this paper successfully generated, 

executed and returned syntactically correct C# files with potential 

access to the entire available C# library. These tests successfully 

implemented dynamic scope and variable control, with the ability 

to automatically generate new variables and restrict their 

application to within their local scope.  

Through simple best-agent mutation over multiple generations, 

where each generation produces, compiles and executes a new 

group of C# files, this algorithm successfully completed multiple 

simple unit tests and returned the solution as a file automatically.  

All generated files executed without runtime or compilation 

issues, both within the live server environment in which they were 

constructed and, using the output source code, independently in 

other C# environments. Efficiency of execution when calling 

generated files is also promising, as they can be called using 

delegates. 

 

using System;  
using System.IO;  
namespace RoslynCore  
{  
 public static class AutoCode  
 {  
  public static double FunctionA(double output)  
  { 
   output += Math.Cos(20); 
   output = output; 
   if (output > 5) 
   { 
    output += 18; 
    double A = output; 
    A = output * 67; 
    output += 3; 
    output = 12 * output; 
    if (output < 27) { 
     output = output * 6; 
     if (output !=0) 
      output = output / 6; 
     output += 51; 
     output = Math.Pow(output, 16); 
     output = A; 
    } 
   } 
   return output; 
  } 
 } 
} 



6 FUTURE WORK 

The genetic algorithm and breeding functions for this system are 

still in progress with the anticipation of greatly improved 

performance per generation. Following this, a more robust 

benchmark showing the full extent of the capability and impact of 

automatic, plain text source code generation is to be carried out. 

Further research is also required to statistically determine the 

distribution of common lines of source code, in order to produce 

an optimal template selection weighting matrix. 

This algorithm was designed with the intention of eventually 

acting as the behavioural controller for a server-based Artificial 

life simulation. This is intended for use by multiple simultaneous, 

geographically distributed users in a co-creative, modifiable 

virtual environment, bringing an emphasis on reducing the 

runtime processing requirements while maximising the quality of 

behavioural output on a server framework.  

The client-side application for this model is intended for 

mobile and mixed reality devices, with an initial benchmark for 

the HoloLens. Continuing work in this direction will breed virtual 

agents in a virtual environment, using an implicit fitness function 

dictated by natural selection, rather than an explicit unit test. 

These agents will need to adapt to indirect human interaction, 

where users will modify the geometry and interactable objects 

within the virtual environment, directly impacting the 

survivability and implicit fitness function of agents. This 

introduces the need for further optimisations between software 

efficiency, speed of adaption and adaptive potential in 

development of the evolutionary algorithm. 

When dealing with behaviour controllers for human interaction 

with this algorithm, a pre-defined genetic sequence which 

constructs a common behaviour may be implemented. For 

example, an initial BOID [18] template could be recreated using 

a manually entered genetic sequence, removing the need for an 

early, low functionality, high failure rate species. This initial 

functionality may then be mutated and expanded through adaptive 

evolution, where dynamic code generation permits absolute 

modification of behaviour from that point forward. 

Alternative development outside of Artificial Life could see 

this algorithm being used as an alternative solution to common GP 

problems, particularly where the output is intended for human 

interpretation. It may also be used to approximate solutions or 

solve simple programming tasks in everyday programming, 

forming the basis of a form of pair programming between a human 

and an AI with integration into an IDE, where the human acts to 

guide the AI by outlining the required functionality. 
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