
Multi-Institutional Multi-National Studies of Parsons Problems
Barbara J. Ericson∗
barbarer@umich.edu
University of Michigan
Ann Arbor, MI, USA

Janice L. Pearce∗
jan_pearce@berea.edu/jpearce@ashesi.edu.gh
Berea College / Ashesi University
Berea, KY USA / Accra, Ghana

Susan H. Rodger∗
rodger@cs.duke.edu
Duke University
Durham, NC, USA

Andrew Csizmadia
a.p.csizmadia@newman.ac.uk

Newman University
Birmingham, England, UK

Rita Garcia
rita.garcia@vuw.ac.nz

Victoria University of Wellington
Wellington, New Zealand

Francisco J. Gutierrez
frgutier@dcc.uchile.cl

DCC, University of Chile
Santiago, Chile

Konstantinos Liaskos
k.liaskos@strath.ac.uk

University of Strathclyde
Glasgow, Scotland, UK

Aadarsh Padiyath
aadarsh@umich.edu

University of Michigan
Ann Arbor, MI, USA

Michael James Scott
michael.scott@falmouth.ac.uk

Falmouth University
Cornwall, UK

David H. Smith IV
dhsmith2@illinois.edu
University of Illinois
Urbana, IL, USA

Jayakrishnan M Warriem
jkm@nptel.iitm.ac.in

Indian Institute of Technology Madras
Madras, India

Angela Zavaleta Bernuy
angelazb@cs.toronto.edu
University of Toronto

Toronto, Canada

ABSTRACT
Students are often asked to learn programming by writing code
from scratch. However, many novices struggle to write code and get
frustrated when their code does not work. Parsons problems can
reduce the difficulty of a coding problem by providing mixed-up
blocks that the learner assembles in the correct order. They can
include distractor blocks with common errors that are not needed in
a correct solution, but which may help students learn to recognize
and fix errors. There is evidence that students find Parsons problems
engaging, useful for learning to program, easier than writing code
from scratch, typically faster to solve thanwriting code from scratch
with equivalent learning gains, and useful for learning patterns.
Most of the research on Parsons problems prior to this work has
been in single institution studies, so we saw a need for replication
across multiple contexts.

A 2022 ITiCSE Parsons working group conducted an extensive lit-
erature review of Parsons problems, designed several experimental
studies for Parsons problems in Python, and created ‘study-in-a-
box’ materials to help instructors run the experimental studies, but
the 2022 working group had only sufficient time to pilot two of the
studies.

Our 2023 ITiCSE Parsons working group reviewed these studies,
revised some studies, created new studies, conducted think-aloud

∗co-leader

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ITiCSE-WGR ’23, July 7–12, 2023, Turku, Finland
© 2022 Association for Computing Machinery.
ACM ISBN 979-8-4007-0010-1/22/07. . . $15.00
https://doi.org/10.1145/3571785.3574127

observations on some studies, and ran revised as well as new ex-
perimental studies. The think-aloud observations and experimental
studies provided evidence for using Parsons problems to help stu-
dents learn common algorithms such as swap, and the usefulness
of distractors in helping students learn to recognize, fix, and avoid
common errors. In addition, we review Parsons problem papers
published after the 2022 literature review and provide a literature
review of multi-national (MIMN) studies conducted in computer sci-
ence education to better understand the motivations and challenges
in performing such MIMN studies.

In summary, this article contributes an analysis of recent Parsons
problem research papers, an itemization of considerations forMIMN
studies, the results from our MIMN studies of Parsons problems,
and a discussion of recent and future directions for MIMN studies
of Parsons problems and more generally.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
Parsons Problems, Parsons Puzzles, Parson’s Programming Puz-
zles, Parson’s Problems, Parson’s Puzzles, Code Puzzles, Multi-
institutional study, Multi-national study

ACM Reference Format:
Barbara J. Ericson, Janice L. Pearce, Susan H. Rodger, Andrew Csizmadia,
Rita Garcia, Francisco J. Gutierrez, Konstantinos Liaskos, Aadarsh Padiy-
ath, Michael James Scott, David H. Smith IV, Jayakrishnan M Warriem,
and Angela Zavaleta Bernuy. 2022. Multi-Institutional Multi-National Stud-
ies of Parsons Problems. In 2023 ITiCSEWorking Group Reports (ITiCSE-WGR
’23), July 7–12, 2023, Turku, Finland. ACM, New York, NY, USA, 110 pages.
https://doi.org/10.1145/3571785.3574127

https://orcid.org/0000-0001-6881-8341
https://orcid.org/0000-0001-7566-9217
https://orcid.org/0000-0002-2524-7718
https://orcid.org/0000-0001-8546-1225
https://orcid.org/0000-0003-4615-4921
https://orcid.org/0000-0002-5285-8901
https://orcid.org/0000-0002-7994-4383
https://orcid.org/0000-0002-4898-3566
https://orcid.org/0000-0002-6803-1490
https://orcid.org/0000-0002-6572-4347
https://orcid.org/0000-0002-4266-0467
https://orcid.org/0000-0002-1228-5774
https://doi.org/10.1145/3571785.3574127
https://doi.org/10.1145/3571785.3574127

1 INTRODUCTION
Learning to program is an inherently difficult task which an ever-
increasing number of students take on every year [59]. Students
of computing are expected to master a programming language’s
basic syntax and semantics, learn how to utilize these elements to
construct programs that accomplish a given task, develop strate-
gies for verifying the correctness of these programs, and debug
them when they identify errors or bugs. In the majority of courses,
students are expected to acquire these skills through code-writing
exercises. In traditional code-writing exercises, where students are
required to write their solutions from scratch in a text editor, the
error space is quite large, and students’ misconceptions make it
difficult for them to succeed [85]. Beyond the difficulty of forming
a correct solution, students often experience frustration, anxiety,
and decreased self-efficacy when repeatedly faced with errors [53].
This motivates the need for tools and approaches for teaching intro-
ductory programming that successfully scaffold learning activities
for struggling students. Improving success, especially early when
learning a new skill, can improve self-efficacy [2].

With these goals in mind, Parsons and Haden [73] introduced
“Parsons Programming Puzzles”, which have come to be known
more simply as “Parsons problems" or "Parsons puzzles". In Parsons
problems, students are given mixed-up blocks that they place in
order to accomplish a given task. Blocks which are incorrect or not
needed to form a solution, called distractors, are designed based
on common student errors. Parsons and Haden’s goals for Parsons
problems were to:

(1) Increase engagement compared to other non-puzzle-like ex-
ercises (e.g., syntax drills).

(2) Reduce the problem-solving space.
(3) Allow students to make and correct common errors through

the use of distractor blocks.
(4) Model good code for students at the individual block level

and the final solution.
(5) Provide immediate feedback in a reduced problem space to

speed up debugging.

Subsequent literature reviews by Du et al. [20] and Ericson et al.
[27] expanded this set ofmotivations to include 1) easing the process
of identifying student difficulties and 2) reducing cognitive load
relative to code writing exercises.

Since their introduction, the adoption of Parsons problems for
teaching introductory programming and research has increased [20,
27]. Denny et al. [18] found a strong correlation between perfor-
mance on Parsons problems and code writing questions in written
exams suggesting that both measure a similar skill set. Subsequent
studies have found that Parsons problems typically improve learn-
ing efficiency compared to fix code and write code exercises while
reducing cognitive load [30]. Beyond the learning benefits, most
students also report that Parsons problems are an enjoyable and
engaging exercise [18, 29].

However, these benefits and positive perceptions are not seen uni-
versally. Some students would rather write code from scratch than
solve a Parsons problem, and some students experience difficulty
when faced with an uncommon solution [43]. Adaptive Parsons
problems were created to modify the difficulty of the current or next
problem to match the learner’s skill level [25, 28]. Work in this area

emphasizes both the need for careful consideration when designing
Parsons problems for novices and the need for further research into
the use of Parsons problems for teaching more advanced students,
particularly beyond CS1 [27].

The ITiCSE 2022 working group led by Ericson, Denny, and
Prather performed a systematic literature review of prior work on
Parsons problems to identify gaps in the literature [27]. In doing
so, they identified a need for large-scale, multi-institutional, multi-
national (MIMN) studies to strengthen the evidence for the benefits
of Parsons problems. Furthermore, they identified a need for more
research on newer variations of Parsons problems, such as adaptive
Parsons [26, 28] and faded Parsons [115]. Finally, most prior work
investigated the utility of Parsons problems in a CS1 context using
Python or Java, with little work teaching other languages or more
advanced concepts.

To fill these gaps, the 2022 working group designed several
‘studies-in-a-box’ on the Runestone Academy interactive textbook
platform [31]. The central goal of these studies was to provide a cen-
tral location for institutions wishing to use themwith all the context
and materials needed to run a Parsons problem study. The working
group initially planned to run the studies in 2022; however, due to
time constraints, studies were only piloted at two universities.

Our ITiCSE 2023 working group built on this work by perform-
ing think-aloud studies and running experimental studies created
by the previous working group. The 2023 working group also devel-
oped additional ‘studies-in-a-box’ materials, and ran these experi-
mental studies in a MIMN context. In addition, the 2023 working
group conducted a literature review on MIMN studies performed
in computing education, reflected on our own experiences perform-
ing a MIMN study, and updated the literature review on Parsons
problems since 2022.

1.1 Related Theories
Experts acquire extensive declarative and procedural knowledge
through intensive and sustained periods of study and practice.
This affects what they observe and how they organize, represent,
interpret, and communicate information within their subject do-
main [32, 98]. It also affects their ability to recognise patterns within
provided data and to generate solutions to problems [38]. There-
fore, practice is essential for learning [48]. Practice should include
constructive feedback, and scaffolding to challenge and support
individual learners to further develop their mastery of a specific do-
main [12]. Optimized learning occurs when the individual learner
remains in their Zone of Proximal Development (ZPD) [112]. Learn-
ers without prior experience or familiarity with a particular lan-
guage’s syntax and grammar require guidance and constructive,
supportive feedback rather than encountering compiler errors that
require deciphering [3, 5, 83]. Parson problems are intended to
provide learners with practice and immediate feedback, and a prob-
lem’s difficulty can be adapted to maintain the learner in their Zone
of Proximal Development.

In their systematic literature review of Parsons problems, Ericson
et al. [27] identified research and discussed the following related
theories associated with the usage of Parsons problems: Cognitive
Load Theory, Worked Examples, Self-Efficacy and Metacognition
and Self-Regulation. These are all relevant to our work as well.

2

1.1.1 Cognitive Load Theory.
Sweller initially proposed cognitive load theory in the 1980s and
since then has refined it [68, 69, 103, 105]. This theory articulates
three types of memory: sensory, working, and long-term. Learning
occurs when new information is processed in working memory and
added to knowledge representations (schemas) in long-term mem-
ory [12]. However, working memory has a limited capacity [65].
If its entire capacity is required to process new information, then
simultaneously, it cannot be used to modify or create new schemas,
which are essential for retaining new information long-term. There-
fore, instructional resources should be designed to maximize the
cognitive capacity available to create schemas.

The amount of cognitive load that a learner experiences is deter-
mined by three components: the difficulty of the material or task
they are presented with, the design of the instruction, and strategies
adopted for constructing knowledge. The difficulty of the material
or task is dependent on learner’s prior knowledge, learner’s prior
experience of addressing a similar task and the task’s complex-
ity [20].

Writing code from scratch is regarded as a high cognitive load
task that can overwhelm novice programmers [110]. One approach
to reduce cognitive load when novice programmers code is to use
code completion tasks rather than code creation tasks [5]. Parsons
problems, are regarded as a code completion problem, and therefore
should have a lower cognitive load for a learner compared to tasks
that require a learner to code the solution in its entirety. This is
due to firstly, Parsons problems constrain the problem space that
learners work with [110] and secondly, the task of creating a coding
solution is transformed as the necessity of remembering the syntax
of a programming language is reduced.

Distractors are code blocks that either contain errors or are not
used in the correct solution to a Parsons problem [99]. Distrac-
tors tend to contain common programming errors and misconcep-
tions [99]. The use of distractors can have a negative impact on
students’ cognitive load [114]. However, distractors provide a level
of “desirable difficulties" [99] to challenge students when they are
constructing a solution and avoid a trial and error approach.

1.1.2 Worked Examples.
An initial goal for Parsons problems was to expose novice learn-
ers to an expert’s solution for a specific problem (a worked ex-
ample) [74]. The worked example effect, in which learning is im-
proved by studying worked examples versus solving problems, is
one of the most well-known effects predicted by Cognitive Load
Theory [1, 16, 104]. Research into worked examples has been un-
dertaken in the fields of mathematics [103, 107, 122] and computer
science [66, 76, 121]. Worked examples are used to promote cogni-
tive skills acquisition and are regarded as being effective for initial
procedural knowledge development, such as learning to code [90].
An alternative argument for worked examples is that students prefer
to learn by studying examples rather than simply reading text [54].
Parsons problems have been used as a type of interleaved practice
after worked examples [29, 45, 46].

Unfortunately, students do not always perceive the value of
learning from worked examples [24], as learning itself requires
cognitive effort [49]. The expertise reversal effect predicts that the

worked example effect decreases and can even reverse as a learner
develops into an expert [108].

In the future, it may even be possible to generate a personalized
Parsons problem, one that is based on a student’s incorrect code so-
lution using Large Language Models (LLMs), and then utilise LLMs
to generate an explanation if the student successfully completes
the coding task but does not understand their solution [15].

1.1.3 Self-Efficacy.
Self-efficacy is the individual’s internal belief that they can be suc-
cessful in addressing a given situation or achieve a task [1]. Individ-
uals often dismiss pursuing a particular career path if they believe
that they will not be successful in that specific career [1]. Students
who encounter errors while coding experience negative emotions
that impact their computing self-efficacy [52]. High self-efficacy
implies and improves persistence in a field, on the other hand low
self-efficacy impacts a student’s resilience and odds of continuing
with a course or major [23]. Negative experiences in courses tend
to affect female students more than male students [22, 61] and
may be a contributing factor in female students deciding to leave a
course [50]. Similarly, students from underrepresented groups tend
to have less prior computing and coding experience [7, 60, 61, 97]
which can contribute to initially lower computing self-efficacy and
reduce the probability of success.

One argument for the use of Parsons problems is that they pro-
vide an opportunity to improve student success on early coding
tasks which should increase students’ self-efficacy. This in turn
could lead to greater student retention and thus could serve to
increase the diversity of the computing student population.

1.1.4 Metacognition and Self-Regulation.
Another reason for instructors adopting Parsons problems is to pro-
vide an opportunity for scaffolding novice programmer metacogni-
tion [82]. At the heart of metacognition is thinking about thinking.
Self-regulation is a metacognitive skill, that relates to a learner’s
ability to self-reflect on their own learning processes, understand,
and amend it if required. Other key concepts include goal-setting,
self-motivation, process-inspection, and self-evaluation. One of the
counter arguments of learning programming is that it is difficult
for a novice programmer in a short space of time to master the
required cognitive skills, such as learning and applying new syntax,
thinking computationally, such that metacognitive skills are often
underdeveloped or absent from the domain [57, 78, 80].

Recent interventions have been made to increase metacognition
with novice programmers [19, 81]. However, only a small number
of these interventions focus on the effects of Parsons problems on
novice programmer metacognition [36, 37, 79].

1.1.5 Desirable Difficulty.
A desirable difficulty may reduce short-term performance but may
serve to improve a learner’s long-term performance on similar
tasks. Desirable difficulties influence the construction of test items
and learning activities and are implemented using distractors, how-
ever the type of distractors chosen can impact a learner’s retrieval
process necessary to successfully solve the task [8, 9].

Parsons problems were originally developed to help students
acquire competence with structural programming syntax [18] and
to occupy the space between reading and writing code. Within a

3

Parsons problem, distractor blocks are added with the deliberate in-
tention of distracting students with seemly plausible but inaccurate
alternatives. These distractors are chosen to either reflect common
programming errors that students make in creating code or indi-
cate programming misconceptions that an individual student might
hold [20, 44, 73]. Therefore, a Parsons problem with distractors
can be used as a formative diagnostic assessment tool to identify
a student’s programming misconceptions and misapplication of
programming concepts. Distractors cannot only differentiate be-
tween students’ performance in solving a specific task but can also
increase the task’s learning potential [99]. Additionally, the use of
distractors addresses Denny et al.’s [18] concern that students can
“game” the Parsons problem without learning. However, [99] rec-
ommends distractors should not be used in summative assessments
because they significantly increase the problem’s completion time
without a significant increase in problem discrimination.

A faded Parsons problem, a variation on the original Parsons
problem, requires a student to type to fill a blank area of a block
to complete the code [35, 114]. As with other types of Parsons
problems faded Parsons problems are intended to occur in the
space between Parson problems and writing code.

2 PARSONS’ LITERATURE REVIEW
An ITiCSE 2022 working group that was focused on Parsons prob-
lems wrote an extensive literature review on the use of Parsons
problems in computing education research [27]. (We will refer
to this as the 2022 WG paper). To collect published papers, they
searched on several topic variants of Parsons problems, Parsons puz-
zles and Parsons programming in (1) ACM Digital Library (Guide
to Computing Literature); (2) IEEE Xplore; and (3) Scopus and did
forward snowballing on those papers that referenced the first pa-
per on Parsons problems by Parsons and Hayden [73]. Using this
process they found over 1000 papers to consider.

To determine whether or not an article was relevant to their re-
view, they utilized three inclusion criteria and six exclusion criteria.

These inclusion criteria were the following, noting that only a
single criteria was sufficient for inclusion:
IC1 Contains empirical results on the use of Parsons problems

and/or collects data from the use of Parsons problems
IC2 Describes a system/tool for presenting/delivering Parsons

problems
IC3 Describes the use of Parsons problems for teaching
The exclusion criteria were the following where fulfilling any

one of the following criteria was sufficient for exclusion:
EC1 Article is not written in English
EC2 Article length is less than or equal to 2 pages
EC3 Article is not peer-reviewed
EC4 Article is a thesis or a dissertation
EC5 Parsons problems are not related to the research questions/-

goals of the paper, and there is no relevant discussion in the
methods or results

EC6 Not related to Parsons problems
For the papers that were identified for inclusion, they recorded

information about each paper using a data extraction form to record
information in a consistent format. This extraction process was
guided by an iteration of several phases that included a training

phrase and updating the extraction form based upon their discus-
sions [13]. From the over 1000 papers they initially found, the data
extraction process identified 141 papers relevant to Parsons prob-
lems for their literature review.

Building on the 2022 WG paper for this paper, we did a search to
determine what articles have been published on the use of Parsons
problems in the time since that literature review up until August
2023. We used the same search criteria and searched for papers on
Parsons problems in the same three venues, namely (1) the ACM
Digital library (Guide to Computing Literature); (2) IEEE Xplore;
and (3) Scopus. This resulted in between 10 and 28 papers for each
of the three searches. These results included a few papers already
considered in the 2022 paper, so these were removed. With the
remaining papers, we then used the same three inclusion and six
exclusion criteria as were used by the 2022 ITiCSE working group.
As a result, we identified 20 papers related to Parsons problems in
computing education that were published since the 2022 WG paper
that had not been listed or analyzed by the 2022 ITiCSE Working
Group. The new papers that we identified are listed in Table 3 and
Table 4.

In this section, we first review the category analysis and tags in
the 2022 WG paper and then describe our findings on the subse-
quently published papers.

In the 2022 WG paper [27], category analysis with category tag-
ging was used to identify and categorize research question themes
in the Parsons problems literature. Two researchers worked to-
gether on defining and tagging the papers, reaching agreement
on the categories as well as the tags. They identified 23 research
themes with each theme in more than one article. Each article was
tagged resulting in each article being tagged with between one and
seven tags.

For this 2023 WG paper, the same two researchers from the 2022
WG paper worked together to categorize and tag the twenty new
papers found, using the same categories from the 2022 WG paper.
After independently tagging the new papers, these two researchers
revisited each of the papers and came to consensus on all tags for
each paper.

The categories found in these new Parsons problem papers are
summarized in Table 1 where they are listed in descending order of
occurrence. Here are some observations on the new tags:

(1) The top two tags in the identified 2023 papers are the same
two top research question themes identified in the 2022 WG
paper. Learning Programming (LP) was the top theme in 17
papers and Research Study Parsons-Focused (RSPF) was the
second most common theme in 14 papers.

(2) Cognitive Load (CL), which occurred in 7 papers, and Inter-
ventive Scaffolding (IS), which occurred in 6 papers, were
the next two most common research themes. They occurred
in positions 10 and 11 in the 2022 papers, which clearly indi-
cates that proportionally more work has recently been done
in these areas.

(3) Research Study but Not Parsons-Focused (RSNPF) and In-
structor Perceptions (IP) were the next two most common
research themes, which both occurred in four papers. RSNPF
was the third most common tag in the 2022 paper.

(4) The remaining categories were all found only 1 or 2 times.
4

Tags Tag Description Count

LP Learning Programming 17
RSPF Research Study Parsons-Focused 14
CL Cognitive Load 7
IS Interventive Scaffolding 6
IP Instructor Perceptions 4
RSNPF Research Study but Not Parsons-Focused 4
PPSS Parsons to Teach Problem Solving Strategies 2
SP Student Perception 2
CSP Collaboratively Solving Problems 1
EA Evolutionary Algorithms 1
GPP Generating Parsons Problems 1
KT Knowledge Transfer 1
LR Literature Review 1
PSSP Problem Solving Solution Path 1
SAS Skill Acquisition Sequence 1
SE Student Engagement 1

Table 1: An overview of the new Parsons problems paper
research themes ordered by decreasing counts.

(5) There were seven tags by the 2022 working group paper that
were not found in any of the subsequent publications. They
are: Expert Behavior (EB), Gender Identity (GI), Learning via
Gamification (LG). Mobile Device (MD), Novices vs Near-
Novice Learning (NNN), Predicting Student Success (PSS),
and User Interface (UI).

The papers reported here were published in 12 different confer-
ences and two journals, shown in Table 2, with the most papers
published at a specific conference was three papers, as three were
published both at SIGCSE TS 2023 and ITiCSE 2023. Combined with
the venues from the 2022 Working Group paper, the top four con-
ferences that published papers on Parsons problems are: SIGCSE
TS with 16 papers; ITiCSE with 15 papers; ICER with 15 papers;
and Koli Calling with 10 papers.

3 MIMN LITERATURE REVIEW
In this section, we present the multi-institutional, multi-national
(MIMN) literature review conducted to support our work in under-
standing the challenges in conducting studies across institutions
and countries. We describe our review in parts, with Section 3.1
describing the design of the MIMN literature review and Section
3.2 presenting the results.

3.1 MIMN Study Design
We conducted a systematic literature review [10] to analyze multi-
institutional, multi-national (MIMN) studies performed within com-
puter science education (CSE). We performed this review to under-
stand the motivations and challenges associated with undertaking
such studies so that we can learn from the prior experiences, and
help us improve our studies and procedures.

For theMIMN literature review, we used the ACMDigital Library
to identify peer-reviewed papers published between 2013 and 2023
using the following two search queries: (“multi-institutional” AND
“computer science education”) and (“multi-national” AND “computer

Conference/Journal Count

ACE 2022 1
ACE 2023 2
ACM TOCE 2022 1
CHI EA 2023 1
EIT 2022 1
GECCO 2022 Companion 1
ICCE 2021 1
ICCSE 2022 1
ICER 2022 1
ITiCSE 2022 2
ITiCSE 2023 3
KOLI 2022 1
SIGCSE TS 2023 3
SIEE 2022 1

Table 2: Conference where Parsons problem were published
for this literature review

science education”). Both queries looked for the search terms in the
paper’s title and body, identifying papers in PDF format published
between January 2013 and July 2023 in journals and conference
proceedings. We included the term “multi-national” to ensure the
participating institutions were across countries and avoided stud-
ies conducted on different campuses at a single institution within
one country. For example, a study by Stuurman et al. [101] was
conducted with distance learning students from Belgium and the
Netherlands, but the course was administered at one location, the
Open University of Belgium. We wanted to review papers that
conducted studies in two or more countries across multiple insti-
tutions within the CSE context. We decided to use country for
the criteria because it concentrates on the geographic region. The
two queries identified 135 papers which we filtered through our
selection criteria.

During our initial review, we identified four MIMN studies,
[34, 55, 63, 116], that were commonly referenced in the 135 pa-
pers related to MIMN in CSE. These four papers were not in our
initial search results because they were not published between 2013
and 2023. However, we felt these papers were relevant to our goal
of providing guidance on conducting MIMN studies. For their back-
ground in MIMN studies in CSE, we decided to include these four
influential papers.

We also observed papers we believe were MIMN studies but
were unable to verify as MIMN due to their study design and con-
text. For example, during our Parsons problems literature review
(See Section 2), the previously mentioned work by Hayatpur et al.
[42] seemed to be a MIMN study with researchers representing the
United States and Canada. The paper also referred to the participat-
ing institutions as “two well-known North American universities”
so we could not confirm the countries and did not include it in our
review because it did not meet our selection criteria. It is possible
that there are more MIMN studies in CSE, but like Hayatpur et al.
[42] some may lack the details on institutions and countries to
classify as MIMN studies.

5

Paper Description Coun-
try

Size Tags

A C Language Learning Plat-
form Based on Parsons Prob-
lems [93]

Designs and implements a C learning platform with Par-
sons problems to reduce cognitive load in learning.

China NA CL, LP,
RSPF

A Review of Worked Examples
in Programming Activities [67]

Reviews the worked-example literature in the context
of programming activities, focusing on code-tracing and
code-generation

Canada NA LR

Adaptive Parsons Problems as
Active Learning Activities Dur-
ing Lecture [25]

Tests the efficiency of solving adaptive Parsons problems
versus writing the equivalent code as lecture assignments

USA 500 CL, LP,
RSPF,
IS

Cybersecurity Education in the
Age of AI: Integrating AI Learn-
ing into Cybersecurity High
School Curricula [40]

Teaches AI and Machine Learning intregrated into Cy-
bersecurity to high school teachers to integrate into their
curriculum using programming activites in NetsBlox

USA 12 IP, LP,
RSNPF

Discovering, Autogenerating,
and Evaluating Distractors for
Python Parsons Problems in
CS1 [99]

Makes contributions related to the selection and use of
distractors in Parsons problems, including templates and
a tool for generating distractors

USA 494 LP,
RSPF,
GPP

Exploring the Difficulty of
Faded Parsons Problems for
Programming Education [35]

Presents a novel open-source tool for delivering Faded
Parsons problems, and exploring the relative difficulty of
three distinct fading strategies as part of an evaluation
in a first-year programming course

New
Zealand

915 LP, PPP,
RSPF

Evaluating the Performance of
Code Generation Models for
Solving Parsons Problems With
Small Prompt Variations [89]

Explores the performance of the OpenAI Codex model for
solving Parsons problems over various prompt variations.

USA,
Fin-
land,
Ireland,
New
Zealand

NA LP,
RSPF

Genetic Algorithm Cleaning in
Sequential Data Mining: An-
alyzing Solutions to Parsons’
Puzzles [106]

Applies genetic algorithms to clean clustering sequence
data based on actions taken by users while solving Par-
sons problems in order to provide understandable tra-
jectories of the events and improve the quality of the
clustering process

USA NA EA, LP,
PSSP,
RSPF

Integrating Parsons Puzzles
within Scratch Enables Efficient
Computational Thinking
Learning [84]

Reviews architecture and implementation strategies de-
veloped to integrate Parsons Programming Puzzles with
Scratch, and then analyzes the use of this new tool.

USA 75 CL, LP,
RSPF,
IP, SE

Table 3: Parsons Literature Review Results Part I

6

Paper Description Country Size Tags

Investigating the Role and Im-
pact of Distractors on Parsons
Problems in CS1 Assessments
[100]

Runs a study that shows that the inclusion of distractors
has a large impact on the amount of time students spend
on solving Parsons problems questions.

USA 576 LP,
RSPF

Learning Computational Think-
ing Efficiently How Parsons
Programming Puzzles within
Scratch Might Help [6]

Reviews architecture and implementation strategies de-
veloped to integrate Parsons Programming Puzzles with
Scratch, and then analyzes the use of this new tool.

USA 38, 624 CL,
IS, LP,
RSPF

Metacodenition: Scaffolding the
Problem-Solving Process for
Novice Programmers [75]

Presents and investigates a new tool called Metacode-
nition, a programming environment for novices that
provides metacognitive scaffolding around an existing
problem-solving framework

Australia 821 IS, LP,
PPSS,
RSPF

Putting Computing on the Ta-
ble: Using Physical Games to
Teach Computer Science [70]

Introduces and investigates a new non-coding, physical
game-based curriculum for middle school students that
focuses on abstraction, representation, and algorithm
development

USA 67, 53 IP,
RSNPF,
SP

Strategies to increase success in
learning programming [33]

Describes a set of activities related to the initial learning
of programming, with Parsons problems as one of the
activities.

Portugal
and Spain

87 LP,
RSNPF

Structuring Collaboration
in Programming Through
Personal-Spaces [42]

Explores a novel collaboration paradigm that tackles po-
tential pair-programming driver/navigator imbalances
while students work Parsons problems

USA and
Canada

18 CSP, LP,
PPSS,
RSPF

Teaching computational think-
ing using scenario-based learn-
ing tools [123]

Teaches computational thinking to generation Z students
with scenario-based learning tools, including Parsons
problems.

Greece 23 IP, SP,
RSNPF,
LP

Teaching Test-Writing as a
Variably-Scaffolded Program-
ming Pattern [56]

Presents a new system design that uses faded Parson’s
problems to teach test-writng and advanced program-
ming patterns to more advanced students

USA NA IS, KT,
PPP

The Impact of Solving Adaptive
Parsons Problems with Com-
mon and Uncommon Solutions
[43]

Presents the results from think-alouds and a mixed
within-between-subjects experiment undergraduates ex-
ploring cognitive load when students solve Parsons prob-
lems with common vs uncommon solutions

USA 95 CL,
IS, LP,
RSPF,
SAS

Using Adaptive Parsons Prob-
lems to Scaffold Write-Code
Problems [47]

Explores two studies on how students can use Parsons
problems as scaffolding to solve write-code problems.

USA 11, 81 CL,
IS, LP,
RSPF

Using Micro Parsons Problems
to Scaffold the Learning of Reg-
ular Expressions [118]

Introduces micro Parsons problems for solving regular
expressions, where the problem consists of one line of
fragments that are assembled in a single line

USA 3752 CL, LP,
RSPF,
SP

Table 4: Parsons Literature Review Results Part II

7

Identified papers using
“multi-institutional” and
“computer science edu-
cation” terms (n = 97)

Identified papers using
“multi-national” and
“computer science edu-
cation” terms (n = 81)

Combined results fro
queries (n = 135)

Removed duplicate
papers (n = 124)

Evaluated the pa-
pers’ full text for
eligibility (n = 44)

Evaluated the pa-
pers’ full text for
eligibility (n = 29)

Evaluated the pa-
pers’ full text for
eligibility (n = 21)

Evaluated the pa-
pers’ full text for
eligibility (n = 17)

Papers included in
the literature re-
view (n = 21)

Added relevant
multi-institutional
multi-national pa-

pers published before
2013-2023 (n = 4)

Excluded papers
that were not multi-
institutional (n = 80)

Excluded papers
that were not multi-
national (n = 15)

Removed papers that
were not related to
computer science
education (n = 8)

Removed papers
that did not conduct
empirical studies,

for example, special
sessions (n = 4)

Figure 1: Exclusion Criteria for Literature Review

Figure 1 provides a visualization of the selection process, which
shows from the original 135 papers, 17 (13%) met our selection crite-
ria. The figure shows eleven (8%) papers removed because they were
duplicates when collating the two queries’ search results. Eighty
(59%) papers were excluded because they referenced MIMN studies
within the background, related work, or future work sections but
were not MIMN studies. Fifteen (11%) papers were removed because

they were multi-international studies but not multi-national. Eight
(6%) were eliminated because the study was not conducted in the
CSE context. For example, the work by Beecham et al. [4] examines
challenges in global software engineering, a software engineering
approach that involves software engineers from around the globe
working together to develop software. The goal of this paper was
to create recommendations for best practices while working in a

8

globally distributed environment. The study evaluated the global
teaming model that contained recommendations for GSE but did
not evaluate within the CS discipline. The paper appeared in the
query results only because it references the CSE space. Four (3%)
papers were excluded because they did not conduct studies, such
as special session papers. In total, the selection process removed
118 (87%) papers. As a result, we reviewed 21 papers along with the
four previously mentioned early influential MIMN studies in CSE
[34, 55, 63, 116].

Six co-authors reviewed the 21 papers. Each co-author was re-
sponsible for two to five papers, extracting key points from them
and saving the information to a Google Spreadsheet. The key points
on the paper included a brief description of the paper, challenges the
researchers experienced, and the motivations and lessons learned
from conducting the study. We also extracted the research instru-
ments used in the study, their proceedings, keywords, countries,
institutions, and participants involved.

After collecting the papers’ information in a spreadsheet, we
quantified some of the attributes, such as the number of countries,
participants, and institutions to display them in a numeric format.
Some [92, 111] conducted studies with educators and students,
which we separated into two groups to better show the participants
involved.

For the studies’ instruments, challenges, and goals, we performed
thematic content analysis [62], to group the common themes to-
gether into categories. For the instruments, we created categories
from the emerging instruments used in the study. Two co-authors
reviewed the instruments listed in the previously mentioned spread-
sheet and discussed how to classify the practical activities, such as
Programming Tests and Trial Assessments. The co-authors decided
to place practical assessments into the Practical Tests category while
activities that measures students’ knowledge of CS concepts were
classified into the Concept Tests category. After the coding process,
we extracted a matrix table to present the coding frequencies for
the instruments.

For the studies’ challenges, we used thematic content analysis
with an initial coding framework of the challenges and guidelines
provided by the influential papers described in Section 3.3. Two
co-authors were involved in this process, coding the challenges
with the coding framework so that we could discuss the trends. We
discussed the identified research trends within the context of our
study, enabling us to compare our work with the findings. When
discussing the challenges presented in the reviewed papers, we
discussed how to address these challenges, so that we could avoid
them when conducting our research.

For the final analysis on the MIMN papers, we used the papers’
keywords to organize them into high-level goals. Two co-authors
were involved in the process, where one classified the papers and
the other confirmed the emerging categories. The authors discussed
the classification of a paper by Parkinson et al. [72] that wrote up
an experience report using the Research in Practice Project Activ-
ity (RIPPPA), an activity to encourage researchers to get involved
in MIMN studies. The authors agreed to place the paper in the
Artifact category because it contains guidelines, methods, and ex-
periences for conducting MIMN students. After the coding process,
we quantified the coding frequencies which are discussed in the
next section.

3.2 MIMN Results
We present the results of the MIMN literature review in two parts:
findings from the influential MIMN studies [34, 55, 63, 116] (Sec-
tion 3.3) and the 16 papers that met our literature review selection
criteria (Section 3.4). We present the influential publications sepa-
rately because the other works use them as guidance in their study
designs and we discuss how they guide subsequent studies through
their work. Section 3.5 concludes this section by bringing together
the common challenges researchers faced when undertaking MIMN
studies.

3.3 Early Influential MIMN Studies in CSE
As previously mentioned in Section 3.1, we reviewed four [34, 55,
63, 116] early influential MIMN studies in CSE discussing MIMN
studies within CSE, serving as guidelines for future MIMN studies.
One of the influential papers by Fincher et al. [34] reviews exist-
ing MIMN studies to present common characteristics across these
studies and provides considerations for researchers wanting to con-
duct future MIMN studies. The work acknowledged that MIMN
studies were emerging in the CSE discipline and wanted to support
future studies by raising awareness of common challenges that may
emerge during these studies. The paper provides considerations for
coordinating a large number of researchers across different coun-
ties, which includes defining roles and responsibilities for team
members. Other considerations include institutional characteristics,
such as student population and enrollment, participant selection
process, data cleanliness, and the analysis techniques to accurately
address the research questions.

Like Fincher et al. [34], Whalley and Lister [116] also provided
guidance on how to conduct a study across institutions and coun-
tries. They were motivated to help researchers contribute to the
BRACElet group, a project that examines the relationship between
reading and writing code in novice programmers. BRACElet is an
ongoing study that focuses on novice programmers and has con-
ducted workshops to form an educational collective designed to
develop test questions used to assess CS1 students. The assessment
questions do not focus on coding, but target students’ reasoning
skills during problem-solving while working with code. The paper
describes the BRACElet study design, with the researchers acknowl-
edging challenges in performing studies across institutions, such
as bringing participants together with different abilities and back-
grounds. This challenge made it difficult for the researchers to
form findings that could be generalised across participants and
institutions.

Fincher et al. [34] also included the McCracken working group
[63] (MCGracken WG) since they observed that it was used as a
model for subsequent MIMN studies. This McCracken WG study
came out of concerns from educators about students’ limited pro-
gramming skills, and the ITiCSE WGs allowed the educators to
explore this problem. The McCracken WG was an early ITiCSEWG
that collected empirical evidence from 216 CS1 students across four
institutions to determine their ability to program at the end of the
course. The study had participants complete a 1.5-hour assessment
with two sections: a practical assessment and multi-choice ques-
tions. The students had three short assignments to choose from for
completing a practical assessment and a series of multiple-choice

9

questions for measuring their understanding of programming con-
cepts. The results from this study showed that students did not
demonstrate the competency expected at the end of CS1 courses.
A potential reason for these findings may be due to students’ per-
ception across the participating institutions that they did not have
enough time to complete the assessment. From the researchers’
perspective, they also observed that time pressure may have been a
factor along with programming habits that impede students’ ability
to construct correct programs, such as mistaking a successfully
compiled program with a solution that addresses the requirements.
In this study, the researchers guide future work to address the
challenges they experienced. For example, some students in the
participating institutions had taken prior programming courses,
which produced a variety in the sample size. The researchers sug-
gested a background questionnaire to promote a more even sample
of participants, which would help to identify data from partici-
pants with the specific level of programming experience for the
study. Another challenge was ensuring the complexity of prob-
lems was uniform across the assessments presented in English and
other languages. To encourage alignment, the researchers suggest
generalizing the instrument and avoiding preexisting knowledge
assumed from students residing in some areas of the world. The re-
searchers also acknowledged that coordination was complex across
the researchers residing in different countries, suggesting future
groups have a coordinator to facilitate the researchers’ work.

The McCracken WG inspired other computer science education
researchers to evaluate further why CS1 students struggle with
programming, such as Lister et al. [55] finding other explanations.
The Lister et al. [55] study evaluated CS1 students’ programming
abilities by confirming their ability to perform tracing on routine
programming tasks, which would demonstrate a basic understand-
ing of the essential programming principles taught in CS1. The
study confirmed through using short coding questions (MCQs) that
students have a fragile understanding of the skills needed for prob-
lem solving. Like the McCracken WG, this study noted differences
in students’ abilities across institutions. Part of this might stem
from how the activity was presented and graded, generating higher
motivation to successfully complete it because it was compulsory
at some institutions while others presented it as non-compulsory.

The papers described in this section acknowledge the difficulties
in conducting studies across institutions, which includes conducting
activities, coordinating data and communicating with researchers
across institutions and countries. These papers provide guidelines
for future work to help mitigate challenges that emerge in MIMN
studies and support the papers discussed in the next section with
MIMN studies in CSE conducted over the past ten years.

3.4 MIMN Studies in CSE (2013-2023)
We present the findings of the MIMN studies using two tables.
The first table, Table 5, provides a brief description of the MIMN
studies, organizing the papers in chronological order. These are the
17 papers from the past ten years, 2013-2023. The table summarizes
the challenges researchers faced when conducting these studies. For
example, Grissom et al. [39] conducted a study that surveyed faculty
in the USA and Canada about their use of student-centered practices.
This study had multiple challenges with a low response rate to

the surveys, educators using different terminology to describe the
practices, and the cultural differences from the institutions applying
these practices. Because of the applied terminology and cultural
differences across the participating institutions, the researchers
limited the study results to one Canadian and 45 USA institutions.

The second table, Table 6, presents the studies’ characteristics
and, like Table 5, organizes the findings chronologically. We use
both tables to discuss the results further, presenting the MIMN
studies by their general characteristics (Section 3.4.1), their instru-
ments (Section 3.4.2), their overall goals (Section 3.4.3), and their
motivations (Section 3.4.4).

3.4.1 General Characteristics. Table 6 presents additional infor-
mation on the studies’ characteristics, including the number of
countries (Cos, median = 3), the institutions (Inst, median = 6.5),
and the participants (Pcps, median = 357). The table displays the
participants as students unless otherwise specified as educators.
For example, Švábenský et al. [111] conducted a study involving 22
educators and 46 students. In this work, the researchers evaluate
graph models that help educators visualize students’ progression
through cybersecurity exercises.

When evaluating the country involved in MIMN studies, we
observed that three (18%) papers did not specify the origin coun-
tries. For example, the study by Porter et al. [77] investigates the
deployment of Peer Instruction in introductory courses, where
three countries participated in the study; however, the authors
of this paper did not explicitly state the countries. We assumed
the countries based on researchers’ geolocations, but in the table,
we define the countries as “Not specified” due to lack of certainty.
Countries involved in MIMN studies include the USA, Ireland, and
Great Britain, but we observed limited representation from Africa,
Asia, and South America. These findings raise questions about the
limited representation of CSE research from these regions. Further
investigation might provide reasons for low participation. For exam-
ple, the lack of representation could be due to language barriers or
additional textual language translation necessary to get involved in
studies. Understanding the limited participation could help develop
strategies that encourage researchers and institutions from these
regions to get involved in MIMN studies.

Table 6 also presents the source of the papers’ proceedings,
where the majority (n=13, 76%) are from ACM conferences. Three
[11, 96, 109] (18%) of the papers are empirical studies generated
from previous ITiCSE Working Groups (WG). For example, the
work by Utting et al. [109] extends the McCracken WG study. Ian
Utting, a contributor to theMcCrackenWG, built on theMcCracken
study by increasing the scaffolding and including a test harness
to support students while solving a programming problem. Like
the McCracken WG, the study design included an assessment test
and Multiple Choice Questions (MCQs) to evaluate students’ under-
standing of learning concepts. The study design included educators’
expectations of students’ performance to strengthen the findings.
Compared to the McCracken WG, the Utting study improved the
correlation between the educators’ expectations and their students’
performance. The results showed that the test harness supported
students’ performance, positively affecting students completing the
activity.

10

Year Paper by Title Countries Brief Description Challenges

2013 Identifying Threshold Concepts: From
Dead End to a New Direction [94]

Ireland & Great Britain Describes a novel approach to identify
threshold concepts.

Students’ data collected was not helpful in identifying
threshold concepts.

2013 A Fresh Look at Novice Programmers’
Performance and Their Teachers’ Ex-
pectations [109]

USA, Great Britain,
Denmark, Israel, Fin-
land, Poland and four
more

Builds on the McCracken 2001 study by
providing CS1 students with scaffolding
and gathering teachers’ expectation on
students’ performance.

Institutional restrictions made it difficult to collect stu-
dent data; ITiCSE WG time constraints; Different back-
grounds and abilities of the student participants.

2014 Benchmarking a Set of Exam Questions
for Introductory Programming [92]

Australia, New Zealand Examines two themes in CS1: students’
performance and the different styles of
exam questions.

Translating activity to different programming lan-
guages; Student performance across institutions re-
sulted in excluded data.

2016 Novice Programmers and the Problem
Description Effect [11]

USA, UK, China, Slo-
vakia

Examines the effects of problem contex-
tualization on novice programmer suc-
cess in a typical CS1 exercise.

Volunteer bias; Different approaches to teaching courses
with educators and instructional materials.

2016 A Multi-Institutional Study of Peer In-
struction in Introductory Computing
[77]

Not specified Investigates peer instruction (PI) in in-
troductory courses.

Different course contexts; Different demographics and
education systems; Educators’ experience with PI; Nov-
elty effect with students.

2017 The Compound Nature of Novice Pro-
gramming Assessments [58]

Not specified Evaluates examination questions used
to assess novice programming at the
syntax level.

Not listed

2017 Insights on Gender Differences in CS1:
A Multi-institutional, Multi-variate
Study [87]

Ireland, Denmark Compares the profiles of students en-
rolled in CS1 courses early in the
courses based on their gender.

The study used a programming test, which was graded
manually, resulting in the reporting of one institution’s
data.

2017 An Instrument to Assess Self-Efficacy in
Introductory Algorithms Courses [17]

USA, Germany Evaluates an instrument that assesses
self-efficacy in the context of an algo-
rithms course.

Most of the reporting came from one institution; Differ-
ent approaches to teaching algorithms by the educators
may have influenced results.

2017 How Student Centered is the Computer
Science Classroom?A Survey of College
Faculty [39]

USA, Canada Surveys educators on their use of
student-centered practices in the class-
room.

Difficulty in getting teaching staff to respond to the
survey.

2018 Programming: Predicting Student Suc-
cess Early in CS1. A Re-validation and
Replication Study [86]

Ireland and Denmark Builds on the work into factors that pre-
dict student success in CS1 using the
PreSS model.

None listed.

2018 An International Investigation into Stu-
dent Concerns regarding Transition
into Higher Education Computing [119]

Sweden, USA, Ghana,
UK, Canada

Investigates issues that lead applicants
to experience levels of concern when
considering a transition into higher ed-
ucation.

The initial survey was designed for Scotland, making it
unsuitable as amulti-national instrument; Low response
rate to the survey.

2021 Challenges Faced by Teaching Assis-
tants in Computer Science Education
Across Europe [91]

Norway, Sweden,
Czech Republic

Surveys TAs on the challenges they face
tutoring CS courses.

Different interactions and responsibilities made it dif-
ficult to generalize findings; Different sample sizes be-
tween the three institutions influenced the comparisons.

2021 Visual Recipes for Slicing and Dicing
data: Teaching Data Wrangling using
Subgoal Graphics [102]

UK, Pakistan, USA,
Egypt, Finland

Investigates subgoal labels as a scaffold-
ing strategy for novices to decompose
problems.

The multi-national study inflated the data variance; Par-
ticipants were not at the desired learning level.

2022 Evaluating Two Approaches to Assess-
ing Student Progress in Cybersecurity
Exercises [111]

USA, Czech Republic Compares two visual models for stu-
dents to progress through cybersecurity
assignments.

None listed.

2022 Experience Report: Running and Partici-
pating in a Multi-Institutional Research
in Practice Project Activity (RIPPA) [72]

Two undefined coun-
tries

Describes experience conductingMIMN
study, providing recommendations for
the community.

Time constraints; Differences in ethics (IRB) approval.

2022 The Impact of COVID-19 on the CS Stu-
dent Learning Experience [96]

UK, Canada, Japan,
USA, Pakistan, Brazil,
Switzerland

Investigates the impact of remote learn-
ing during COVID 19 on students learn-
ing experiences.

Time constraints prevented IRR calculations; The re-
mote WG influenced the depth of the thematic analysis.

2022 PreSS: Predicting Student Success Early
in CS1. A Pilot International Replication
and Generalization Study [88]

USA, Ireland Conducts an international replication
and generalization study on PreSS.

Lack of diversity in countries, language, university level,
and topics; Small data made it difficult to generalize;
Bias in the institutional quality.

Table 5: MIMN Literature Review: Study Descriptions

11

Overall the general characteristics of MIMN studies show these
studies have a substantial dataset (Pcps, Median=357). In addition,
the participating countries (Cos, Median=3) have multiple institu-
tions (Inst, Median=6.5) within the countries participating in the
study.

3.4.2 Instruments. Part of our review evaluated the instruments
used in the studies to determine how data was collected. The most
commonly used instrument was Surveys (n=13, 45%). For example,
Sheard et al. [92] developed a benchmark for use across institu-
tions that measures student performance. This work was motivated
by poor performance educators observed by CS1 students across
multiple institutions. The study asked educators from multiple
institutions to provide examination questions that measure CS1
students’ performance. When evaluating these questions across
institutions, the results identified “four simple questions in intro-
ductory programming courses at a wide range of institutions” [92,
p. 113].

The next instrument commonly used in MIMN studies was Pro-
gramming Tests (n=7, 24%) which evaluate students’ understanding
of programming concepts. The study by Bouvier et al. [11] focused
on the contextualization of programming exercises for CS1 stu-
dents. The use of programming tests in this study is not surprising
since they wanted to measure students’ understanding of program-
ming concepts, and most (n=11, 65%) studies were centered on the
students.

Instruments infrequently applied were Interviews (n=1, 3%), Con-
cept Mapping (n=1, 3%), Non-Programming Exercises (n=1, 3%), Re-
flection Essays (n=1, 3%), and Teacher Reflections (n=1, 3%). An ex-
ample study using one of these instruments is by Riese et al. [91],
who applied reflection essays to collect teaching assistants’ (TAs)
perceptions of managing a high number of enrolled students in the
classroom. The survey asked the TAs to give detailed feedback on
the assessments and individual tutoring. Using qualitative analysis,
the researchers identified five main challenges, such as defining
and using best practices, which allowed them to discuss the ethical
dilemmas for TAs and outline implications for future TA train-
ing. It is possible that these instruments were not commonly used
due to the qualitative analysis typically required to report findings
from the collected data. However, more work is required to draw a
conclusion.

3.4.3 Overall Goals. When evaluating the overall goals of these
papers, the foci align with three broad categories: Student (n=11,
64%), Teacher (n=3, 18%), and Artifact (n=3, 18%). Student-centered
research was the most common, focusing on students’ perceptions
and learning. For example, Siegel et al. [96], another ITiCSE WG,
conducted an empirical study that investigates the impact of re-
mote learning on students’ learning experiences during COVID-19.
The study looked at different factors that influence the students’
experiences, including the type of virtual learning, mental health,
and study skills. Though the researchers leveraged work done by
a previous ITiCSE WG [95] focusing on COVID-19, building on
the background research and a multi-national study with educa-
tors to collect their experiences with online tools and technologies,
the authors ran out of time to report their findings by the ITiCSE
WG deadline. The second category, Teacher, contained papers in-
vestigating instructional strategies to improve teaching practices.

An example of this is the previously mentioned Porter et al. [77]
work examining Peer Instruction (PI) in CS1 course, providing “ev-
idence that introductory computing instructors can successfully
implement PI in their classrooms” [77, p. 358]

The final category, Artifact, contained three papers [72, 92, 94]
with contributions on products or objects for practices and learning,
such as assessment quality and critical self-reflection. One paper
focusing on artifacts was by Parkinson et al. [72] that describes
the Research in Practice Activity (RIPPA), an initiative designed
to support researchers in conducting Computing Education Re-
search (CER). The United Kingdom and Ireland Computing Edu-
cation Research (UKICER) conference supports RIPPAs through a
collaborative pathway at the conference, encouraging the research
community to conduct MIMN studies [51]. To evaluate the RIPPA,
the authors used critical self-reflection to identify ways to improve
the activity, including examining extending support to research-
practice collaboration for future studies. Considerations for future
support include encouraging groups to start the research early
and having the groups meet frequently to discuss study goals and
outcomes. The RIPPA report demonstrates the research commu-
nity’s continual interest in improving support for MIMN studies
where centering on the collaborative experiences can help promote
higher-quality research.

3.4.4 Motivations for MIMN Studies. We found several motivations
for MIMN studies such as to help understand teaching practices
[11] and to generalize instruments [87, 92] for use across multiple
institutions and countries. The Quille et al. [87] study examined
gender early in CS1 courses to determine if there are any significant
differences in background, programming, self-efficacy, and anxiety.
The PreSS (Predict Student Success) model, presented to students
as two web-based surveys, enabled student participation across
multiple institutions in Ireland and Denmark. The collected data
provided opportunities to generalize the findings so that institutions
can understand students’ self-efficacy, comfort, and anxiety by
gender and help promote strategies for retention.

3.5 Considerations from Previous MIMN Studies
The literature review identified considerations for researchers when
conducting MIMN studies. In this section, we present these consid-
erations in bold, organizing them into three areas: Team Coordi-
nation (Section 3.5.1), Institutional Considerations (Section 3.5.2),
and Study and Data Integrity (Section 3.5.3). The papers providing
the considerations suggest they can promote a positive experience
when conducting the study. We reflect on these considerations for
our study, which we discuss in Section 7.2.

3.5.1 Team Coordination. Collaboration can be difficult for teams
conducting an MIMN study because the research group is glob-
ally distributed [63]. Considerations for team coordination are
necessary to synchronize the team in achieving the study’s goals.
Considerations include starting early on the project and having
the groupmeet frequently. By starting early, the group can for-
malize the participant list early to help define the relationship
within the group [72] for researchers to collaborate on tasks. During
the group meetings, the researchers can reiterate and discuss the

12

Year Paper # Co # Inst # Pcps Instruments Keywords Proceedings

2013 Shinners-Kennedy and
Fincher [94]

2 3 32 Survey, Interviews, Concept-
mapping

Threshold Concepts, Hindsight
Bias, PCK

ICER

2013 Utting et al. [109] 10 12 418 Concept Tests, Programming
Tests, Teacher Reflections

Programming, CS1, Assessment,
Replication

ITiCSE WG

2014 Sheard et al. [92] 2 6 826, 17E Surveys, Concept Tests Standards, Quality, Examina-
tion Papers, CS1, Introductory
Programming, Assessment

ACE

2016 Bouvier et al. [11] 4 6 232 Programming Tests Context, Novice Programmers,
CS1

ITiCSE

2016 Porter et al. [77] 3 8 363 Surveys Faculty Adoption, Clickers,
Peer Instruction

SIGCSE

2017 Luxton-Reilly and Pe-
tersen [58]

- 3 9 Programming Tests CS1, Novice Programming, Con-
cepts, Syntax, Assessments, Ex-
ams, Questions

ACE

2017 Quille et al. [87] 2 11 693 Surveys, Psychological Ques-
tionnaires, Programming Tests

Computer Science Education,
Gender, Female, Programming
Self efficacy, Programming, CS1

ITiCSE

2017 Danielsiek et al. [17] 2 4 362, 130* Surveys Computer Science Education,
Algorithms, Self Efficacy

ICER

2017 Grissom et al. [39] 2 46 684 Surveys Instructional Practice, Evidence-
based Instructional Practices,
Student-Centered, Instructor-
Centered, Active Learning

ACMTOCE

2018 Quille and Bergin [86] 2 11 692 Surveys, Psychological Ques-
tionnaire, Programming Tests

Computer Science Education,
Programming, Success, CS1

ITiCSE

2018 Zarb et al. [119] 5 9 351 Surveys Concerns, Transition, CS1, Re-
tention, Higher Education

ITiCSE

2021 Riese et al. [91] 3 3 180 Reflection Essays Teaching Assistants, TAs, Chal-
lenges

ITiCSE

2021 Sundin et al. [102] 5 3 288 Surveys & Non-programming
Exercises, Programming Tests

Data Science, Data Wrangling,
Programming Education, Visu-
alization, Graphics, Subgoals

Koli Calling

2022 Parkinson et al. [72] - - - Surveys, Concept Tests Experience Report, Multi-
institutional, Spatial Skills,
RIPPA

UKICER

2022 Švábenský et al. [111] 2 2 46, 22E Surveys Cybersecurity Education,
Command-line History, Educa-
tional Data

SIGCSE

2022 Siegel et al. [96] 7 23 304 Surveys COVID-19, Coronavirus, Com-
puting Education, Online Edu-
cation, Student Perspective

ITiCSE WG

2022 Quille et al. [88] 2 3 472 Surveys, Psychological Ques-
tionnaire, Programming Tests

Computer Science Education,
Programming, Machine Learn-
ing, Predicting Success, CS1

ITiCSE

E - Participants are educators

* - Measuring student participants pre-post course

Table 6: MIMN Literature Review Results: Study Characteristics

13

project outcomes and goals frequently to ensure the researchers
align on the project’s goals and tasks.

The coordination aspects MIMN researchers need to discuss are
communication protocols, project timelines, and meeting times
that accommodate group members within different time zones. The
group also needs to discuss data ownership, deciding early in the
project what to do with the data after the study. The group needs to
decide how to release the data publicly, how other studies can use
the data, and how, when, and where the data should be archived
[34]. The team can also benefit from continually checking for
skills development opportunities to help teammembers develop
skills [72], such as research skills.

3.5.2 Institutional Considerations. It is well established that edu-
cational institutions are different. Differences include course cur-
riculum, course delivery, and size of the courses. These differences,
or institutional characteristics, can influence the collected data,
potentially impacting how future research reproduces the study at
their institutions [34]. To address these differences, the research
group needs to consider the selection of participants across the
institutions. The recruitment may vary due to the size of the cohort
and their availability. The institutions may have different partici-
pation protocols, for example, student participants are required to
complete the study or participation is voluntary [34].

Another institutional characteristic is grades [34] and compar-
ing these grades across institutions cannot accurately represent
the participants’ performance. In addition, comparing students’
performance using the collected data needs to be considered be-
cause the students across the participating institutions have dif-
ferent backgrounds and abilities. As a result, the study design has
to include assurances to mitigate these differences influencing the
results. Overall, to help collect data across the institutions for com-
parison and to ensure participants meet the study’s requirements,
the study design and instruments can “specify the level of prior
programming experience or the specific programming knowledge
that the students are assumed to have for each exercise” [63, p. 143].

Lastly, another consideration for institutional characteristics is
the ethics (IRB) approval process, where the timing, requirements,
and application differ. Fincher et al. [34] recommend that the first
task is securing IRB approval so that the team can complete their
project within the given timeline. Siegel et al. [96] experienced first-
hand as an ITiCSE WG that approval of IRBs can delay a research
project. For the Siegel WG, the delay caused a shorter time frame
for the group to complete the project.

3.5.3 Study and Data Integrity. Another way to ensure success in
an MIMN study is to have a robust study design for the researchers
to apply at their institutions. Strengthening and evaluating the
robustness of the study design can involve a pilot program. The
McCrackenWG [63] encourages using a pilot program to form solid
instruments, analysis processes, and data formats. A pilot program
allows the research group to ensure consistent data collection.
Prior MIMN studies [34, 63] noted challenges in data collection
that include data wrangling to align the contents and structure of
the data files. Prior work [120] has also stressed the importance of
standardizing qualitative data collection to give researchers more
equal and clean comparisons across the institutions.

Though the researchers strive to collect consistent and appro-
priate types of data for the study, they also have to consider the
character of the data because the data can be different across the
institutions, potentially affecting the analysis. The researchers must
select the relevant parts of the data for comparative analysis [34].
Consistent data collection can help mitigate issues surrounding
data cleanliness, giving researchers concrete data management
guidelines that protect the integrity and reliability of the final data
set [34]. In addition, the study can apply multiple instruments, po-
tentially generating a variety of data or an incomplete data set due
to different factors, such as attrition, where participants do not
finish the study’s interventions and instruments.

In addition to deciding on the data to collect, researchers must
also decide on the choice of analysis techniques. For example,
observational and unstructured interviews require extensive inter-
actions and communications between researchers during analysis,
which can be difficult to coordinate across researchers at different
institutions. In contrast, quantitative data analysis requires less
inter-reliability once they agree on statistical tests for the data [34].

Related to the data collection and analysis process is reliability.
Some approaches to collecting and analyzing data are vulnerable
to inter-rater reliability issues, such as observational studies, but
to mitigate reliability issues, researchers should adopt a “a detailed
“script” describing the data collection process, and the use of ex-
plicit checks for inter-rater reliability wherever possible in the data
collection / or analysis process” [34, p. 117].

Some MIMN studies include institutions that use different pro-
gramming languages for instruction or use different textual lan-
guages in the learning environment. These differences generate
another consideration for ensuring consistent data is the presen-
tation of the study design within these institutions. Translation
of the study design, which includes interventions and instruments,
may be necessary to ensure the translation complexity aligns with
the native [63]] programming languages used in the original study
design. With multi-national institutions involved in the study, the
researchers should consider removing localization that assumes
knowledge from a particular place. This is sometimes called cultur-
ally neutral [63]. This term may be misleading because the study
cannot impose a culturally neutral study when the institutions
bring their values to the classroom.

4 2023 WORKING GROUP PARSONS PROBLEM
STUDIES

The 2022 ITiCSE Parsons working group created and piloted sev-
eral studies for Python based on gaps identified by an extensive
literature review [27]. For example, while research has shown that
students can usually solve Parsons problems significantly faster
than writing the equivalent code with equivalent learning gains,
these studies have been conducted at a single institution, in a sin-
gle country, in a single programming language/environment, and
on introductory computing concepts [26, 28, 30, 121]. Therefore,
there is a need to replicate these studies at other institutions in
various nations, with more advanced concepts, more programming
languages, and newer types of Parsons problems.

In addition, there is evidence for and against using distractors,
i.e., blocks that are not needed in a correct solution. Parsons and

14

Pretest (Optional)
Study

Information
Page

Presurvey Introduction to
Problem Types

Condition A

Condition B
Posttest Postsurvey (Optional)

Figure 2: The Study Pipeline for A-B Design

Haden [73] used distractors in the first Parsons problems and ex-
pected them to help students learn to recognize common syntax
and semantic errors. Denny, Luxton-Reilly, and Simon [18] found
that distractors increased the difficulty of a Parsons problem, pro-
viding a distractor for every correct block overwhelmed students,
and visually paired distractors were easier than randomly mixing
in the distractors with the correct code. Distractors can also help
students focus on details and reduce the ability for students to
solve a Parsons problem through simple heuristics such as variable
name dependencies [26]. Harms, Chen, and Kelleher [41] reported
that distractors increased reported cognitive load, decreased suc-
cess, and increased time on task. However, they tested semantic
distractors, not syntactic distractors, and tested learning by having
students solve a Parsons problem without any distractors. This did
not test the ability of distractors to help students learn to recognize
and fix errors. Distractors may provide desirable difficulties in that
even if they slow initial learning, and they may promote long-term
learning [9]. Distractors can also keep students in the Zone of Prox-
imal Development (ZPD), where students are challenged but not
frustrated [113].

There has also been research that provides evidence that solving
Parsons problems can help students learn common patterns [115].
However, again, that is from a single institution in a single country.

The overall research questions that the 2022 working group fo-
cused on were: What is the effect on completion time and learning
performance for 1) solving adaptive Parsons problems with distrac-
tors versus writing the equivalent code, 2) solving adaptive Parsons
problems with distractors versus Parsons problems without dis-
tractors, 3) solving write code problems with a Parsons problem as
scaffolding versus a write code problems without scaffolding, and
4) Were there significant differences by high vs low self-efficacy
or self-evaluation? The 2022 working group was also interested
in the effect of success rates of solving a set of Parsons problems
on students’ ability to write code for common algorithms and the
number of errors during code writing. The 2022 working group
created four studies: p3pt, class-tog, class-exp, and python-swap.
The study p3pt tests the effect of solving adaptive Parsons prob-
lems with distractors versus writing the equivalent code. The study
class-tog tests the effect of using a Parsons problem as scaffolding
during a code writing problem versus no scaffolding. The study
class-exp investigates the effect of solving Parsons problems with
and without distractors on the ability of students to fix code with
errors similar to the distractors and write code from scratch. Finally,
python-swap tests the effect of solving three Parsons problems on
students’ ability to reproduce a common algorithm: swapping the
value of two variables.

Three of the studies were between-subject studies with two con-
ditions (p3pt, class-exp, and class-tog) that took from 50-70 minutes,
while the other (python-swap) was a within-subject study that took

20-30 minutes. The first three studies were all intended to be run
after students had covered the basics of Python (variables, strings,
loops, conditionals, and lists) and before they learned how to write
new classes in Python.We created python-swap to be a shorter study
that could be run early in an introductory programming course.

The 2023 Parsons working group reviewed these studies and
decided to create a new Python study, p3dnd, which also tested
solving Parsons problems with and without distractors since some
of the working group members planned to recruit students who had
already completed an introductory programming course in Python.
The p3dnd study was intended to be harder than p3pt. The 2023
working group members also created versions of some studies for
other programming languages. They created jspt based on p3pt for
JavaScript but also with the study materials in Spanish. In addition,
they created c-swap based on python-swap and cdnd based on p3dnd
for C.

In addition, the 2023 Parsons working group also made a think-
aloud version of class-exp called classta in which students were
exposed to Parsons problems with distractors (WD), Parsons prob-
lems with no distractors (ND), and toggle problems (TP) which
display a code writing problem but include the ability to pop-up
the equivalent Parsons problem. This was still an A/B study with
two conditions, where A was (ND, WD, ND, WD, TP) and B was
(WD, ND, WD, ND, TP). The problems were in the same order in A
and B, and they only varied by having distractors or not.

Finally, the 2023 Parsons working group also created a think-
aloud version of p3dnd called p3dndta with six practice problems
bothwith distractors (WD) and no distractors (ND). The A condition
was (ND, WD, ND, WD, ND, WD), and the B condition was (WD,
ND, WD, ND, WD, ND). Again, the problems were in the same
order in A and B, with the only difference being whether they had
distractors.

All of the studies included an information page about the study,
a presurvey, an introduction to the problem types, a set of practice
problems, and a posttest. In addition, there were two optional parts:
a pretest and a postsurvey. The procedure for all between-subjects
studies is shown in Figure 2.

4.1 Study Information Page
The information page gave an estimate of the time to complete the
study, instructions on how long to work on a problem before giving
up on it (fiveminutes), and explained the parts of the study as shown
in Figure 3. Students clicked on the link at the end of each page
to go to the next page. In between-subjects studies, students were
randomly placed in either condition A or B based on generating a
random number.

15

Figure 3: An example introduction about the study page. This one was for p3pt

4.2 Presurvey
The presurvey contained six Likert scale questions from a survey on
self-efficacy for computing with evidence for reliability and validity
[117]. Answers ranged from 1 (Strongly Disagree) to 5 (Strongly
Agree).

(1) Generally I have felt secure about attempting computer pro-
gramming problems.

(2) I am sure I could do advanced work in computer science.
(3) I am sure that I can learn programming.
(4) I think I could handle more difficult programming problems.
(5) I can get good grades in computer science.
(6) I have a lot of self-confidence when it comes to programming.

Rather than using a pretest to check that groups were not sig-
nificantly different based on prior experience, we added questions
to the presurvey that asked students to select the answer that best
matched their familiarity and confidence about specified concepts.
The concepts in the survey varied by study. While there are assess-
ments of CS1 knowledge, such as SCS1 [71], that have evidence
for validity and reliability, they are quite lengthy and cover more
concepts than our studies. A recent study provided evidence that
self-evaluation questions correlate with the score on SCS1 and the
score on a code writing exam [21]. Students answered the self-
evaluation questions using the following 5-point Likert scale.

(1) I am unfamiliar with this concept.
(2) I know what it means, but have not used it in a program.
(3) I have used this concept in a program, but am not confident

about my ability to use it.
(4) I am confident in my ability to use this concept in simple

programs.
(5) I am confident in my ability to use this concept in complex

programs.
Having a set of questions about prior programming experience

and knowledge in a MIMN study, as discussed in Section 3.5, can
help account for potential differences between students from di-
verse institutions, such as backgrounds and abilities.

4.3 Introduction to Problem Types
Since most 2023 Parsons working group members do not usually
use the Runestone ebook platform, we created a page to introduce
students to the different types of problems they would have to solve
in the studies. This introduction contained videos demonstrating
how to solve Parsons problems and code-writing problems. It also
included simple practice problems to test that students could solve
each type of problem, as seen in Figure 4 and Figure 5. The 2022
Parsons problems working group piloted studies and found that
all of the students successfully solved all of the practice Parsons
problems. However, some students struggled to solve the practice

16

code-writing problem even though it was very similar to the prob-
lem that was solved in the video. These students were not familiar
with functions that took parameters or unit tests. Therefore, we
modified our instructions to include that students should be fa-
miliar with unit tests and functions that take parameters before
participating in the studies.

4.4 Optional Pretest
We developed an optional pretest that consisted of a timed exam
with ten multiple-choice questions that measured basic knowledge
of Python 3. In a timed exam, the students must start the exam by
clicking the "Start" button. As depicted in Figure 6, the questions
are shown one at a time. Students can select an answer but do
not receive any feedback on their answers. Students navigate by
clicking the "Next" or "Prev" button or instead the button for a
particular question number. The exam shows the time left and will
automatically stop when the time expires, and all answers will be
saved. The multiple-choice questions covered strings, conditionals,
functions, printing values, types, nested lists, a for loop with a
range, a for each loop, a while loop, modulus, and break and
continue. The questions have been used as a pretest to check
students’ knowledge of Python 3 in a programming course at the
University of Michigan. See the appendix for all of the pretest
questions.

We made the pretest optional to reduce the required time for the
studies. To compare groups, we instead used the self-evaluation
ratings on particular concepts. We recommended that if instructors
wanted to use the pretest, they have students answer it on a different
day than the study. If instructors used the optional pretest, they
would have students start with an introduction to the timed pretest,
which included a video to show how to start the exam, navigate
between questions, flag a question to remind themselves to review
it later and submit their answers. This page also included a practice
timed exam with two simple multiple-choice questions, as shown
in Figure 7. A link at the end of that page took students to the actual
timed pretest.

4.5 Optional Postsurvey
The 2022 ITiCSE working group also developed an optional postsur-
vey that included questions on demographics, prior programming
experience, ability to read and understand spoken English, and
prior exposure to Parsons problems. We made this survey optional
both to reduce the required time for the studies and because institu-
tions in some countries are not allowed to ask demographic types
of questions. The first seven questions allowed free text input and
were:

(1) What is your age in years?
(2) What is your major or intended major, or program of study?
(3) What is your gender identity (woman, man, non-binary, etc,

prefer not to say)?
(4) What year are you in your undergraduate education (1st,

2nd, 3rd, etc)?
(5) Please list any learning issues we should be aware of, such

as Dyslexia, Autism, ADHD, etc or enter none.
(6) About how many hours have you been programming in

Python?

(7) What language(s) do you speak at home?

Two questions asked the students to rate their ability to read
and understand spoken English using a 5-point Likert scale where
1 = Poor, 2 = Below Average, 3 = Average, 4 = Above Average, and
5 = Excellent. We felt this was important since the study materials
(text and videos) were originally in English.

The last question asked if the students had experience with
Parsons problems before the study. They could select "Yes" or "No".

4.6 Study Details
4.6.1 p3pt. This between-subjects study compares the learning
performance and time to completion between solving adaptive Par-
sons problems with distractors versus writing the equivalent code.
For example, Figure 8 shows the first practice problem as a Parsons
problem on the left and a write code problem on the right. Students
must be familiar with the following: Python 3 basics, including
variables and modulus, strings (including slice), loops (for each
and for with range), conditionals, lists, modulus, functions that
take values, and unit tests. The ideal time for this study is after an
introduction to lists and loops but before learners are proficient
with lists and loops. The study takes about 50 minutes.

The self-evaluation concepts that students rated their level of
familiarity for this study were:

(1) Loops/Iteration like for n in nums: and for i in range
(4):

(2) Conditionals/Selection Statements like if x < 3:
(3) Functions like def get_odd(nums):
(4) Lists like a = ["red", "green"]

4.6.2 jspt. Building upon p3pt, we adapted the study to JavaScript
to account for the difference in the programming language of in-
struction at one of the institutions. The conducted procedure was
structured as follows: (1) First, we reviewed the Python items and
code examples in the original version of the study (i.e., p3pt), ensur-
ing that they were translated correctly into JavaScript syntax; (2)
Next, one of the co-authors and a team of experienced instructors
in CS1 verified that the overall perceived difficulty of the items did
not get lost in translation; (3) Finally, we piloted the two versions
of the experiment (i.e., p3pt in Python and JavaScript) to control
as much as possible for ambiguity, objective specification of items,
coding patterns, and comparable perceived difficulty between ex-
periments. For example, Figure 9 shows the first practice problem
involving string manipulation. Note the contrast to the first practice
problem of p3pt (cf. Figure 8), where code indentation is required
in Python, but in Javascript code blocks are defined in between
curly braces (so indentation is not required). Since the study was
conducted in a Spanish-speaking institution, the experiment items
and platforms had to be translated due to the language barrier and
potential accessibility concerns.

4.6.3 class-exp. This between-subjects study compares the learn-
ing performance and time to completion between solving adaptive
Parsons problems with and without distractors, as shown in Figure
10. Students must be familiar with the following: Python 3 basics,
including variables, strings, random, functions that take values,
and unit tests. The ideal time for this study is before students have

17

Figure 4: Practice Parsons problem in the introduction to the problem types

Figure 5: Practice write-code problem in the introduction to problem types

been introduced to writing new classes in Python. This study in-
cludes a short introduction to creating objects and writing new
classes in Python, which comes after introducing the problem types
and before the presurvey. This includes creating the __init__ and
__str__methods, creating new class objects, and adding additional
methods to a class. The study takes about 60 minutes.

The self-evaluation concepts that students rated their level of
familiarity for this study were:

(1) Creating classes like class Person: and objects like p =
Person("Barb␣Ericson")

(2) Methods like __init__ and __str__
(3) The use of self in class
(4) Defining instance variables like self.color = color

4.6.4 class-exp-ta. The class-exp-ta study is a version of the class-
exp study designed for think-aloud observations. It exposes par-
ticipants to solving Parsons problems both with distractors (WD)
and no distractors (ND) as well as a toggle problem (TP) in which
students are asked to solve a write code problem but can pop-up
a Parsons problem as scaffolding [47]. The participants are placed
randomly in conditions A or B. The A condition is WD, ND, WD,
ND, TP, and the B condition is ND, WD, ND, WD, TP. The Parsons
problems are in the same order in both A and B. The only difference
is if they have distractors or not.

4.6.5 class-tog. This between-subjects study compares the learn-
ing performance and time to completion between writing code
with a Parsons problem as scaffolding versus writing code without

18

Figure 6: The pretest interface shows the second multiple-choice question in the pretest and the navigation buttons

a Parsons problem as scaffolding. See Figure 11 for an example.
Students must be familiar with the following: Python 3 basics, in-
cluding variables, strings, random, functions that take values, and
unit tests. The ideal time for this study is before students have been
introduced to writing new classes in Python. This study includes
the same short introduction to creating objects and writing classes
as class-exp. The study takes about 60 minutes. This study also
includes the same self-evaluation questions as in class-exp.

4.6.6 python-swap. This study investigates how well students can
learn to reproduce the code to swap the values of two variables after
solving three Parsons problems. In the first Parsons problem, the
blocks contain comment blocks describing the algorithm’s steps, as
seen in Figure 12. We refer to these blocks as pseudocode comment
blocks. In the second Parsons problem, the blocks contain pseudocode
comments plus code, as shown in Figure 13. In the third Parsons
problem, the blocks contain only code, as seen in Figure 14.

The self-evaluation concepts that students rated their level of
familiarity for this study were:

(1) Setting the value of a variable like: x = 4
(2) Swapping the values of two variables so that var1 has the

original value of var2 and var2 has the original value of
var1

The posttest had two write code problems where the variable
initialization was provided, and students were asked to write the
code to swap the values in the two variables as shown in Figure 15.
The first used variable names of x, y, and temp just like the practice

Parsons problems and the second problem used a, b, and temp in
order to check for near transfer.

In order to gain further insight into any affordances provided by,
or drawbacks created by, practice via Parsons problems, we con-
ducted think-aloud interviews with students while they completed
this study. Given this study did not involve the random assignment
of students to conditions, we used this study as is, without any
modifications for the think-aloud context.

4.6.7 c-swap. Building upon python-swap, we translated the study
to C to be conducted at a broader set of institutions. The c-swap
study had the same structure as python-swap, described in Section
4.6.6, that is, the same instructions, type of problems, pseudocode
comments in the blocks, and variable names. The lines of code
provided in the Parsons problems blocks were changed to C. For
the first two Parsons problems, the blocks remained almost identical
to python-swap, only with C syntax. For the third Parsons problem,
the blocks contained the code for swapping two strings rather
than integers, as shown in Figure 16. This change was done as the
code for swapping strings is not directly transferable in C; thus,
presenting the problem to students helps to highlight the additional
steps to account for when working with different types and yet
following the same logic. For the posttest, the first problem had the
same structure as python-swap’s first posttest problem. The second
posttest problem was also similar in structure; however, it tested
for swapping strings like the third Parsons problem.

19

Figure 7: The practice timed exam in the introduction to the timed pretest

Figure 8: First practice problem for p3pt, Parsons problem with distractors on the left and write code problem on the right

20

Figure 9: First practice problem for j3pt as a Parsons problem (in JavaScript)

The procedure to translate python-swap into C was similar to
jspt presented in Section 4.6.2: (1) First, one co-author reviewed the
Python code in the original version of the study, ensuring that they
were translated correctly into C syntax; (2) Then, one of the co-
authors and a team of experienced (and current) instructors verified
that the overall perceived difficulty of the study did not change, even
with the new added problem. Since students are already familiar
with loops and how string variables behave differently than integer
variables in C, the consensus was that the difficulty levels remain
constant given the change of context.

4.6.8 p3dnd. Similar to class-exp, this study compares learning
performance and time-to-complete between solving Parsons prob-
lems with distractors and those without. This study was created to
address the need for a more complex set of algorithmic tasks and, as
such, was comprised of problems from LeetCode1 and CodingBat2

1https://leetcode.com/problemset/all/
2https://codingbat.com/python

that were deemed appropriate for CS1. Students should be familiar
with the basics of Python3: loops, conditionals, built-in data struc-
tures (e.g., lists), and unit tests. The ideal time to run this study is
after students are familiar with the basics of Python and are in the
process of learning to construct solutions to problems that are of
moderate complexity for CS1 students (e.g., the rainfall problem).
The study was designed to take approximately 60 minutes for stu-
dents to complete. It used the same self-evaluation questions as
p3pt. The first practice problem is shown in Figure18 as a Parsons
problem with distractors on the left and without on the right.

4.6.9 p3dnd-ta. The p3dnd-ta study was a redesign of the p3dnd
study to conduct think-aloud observational studies. Given the orig-
inal study compared students randomly assigned to one of two
groups, this study removed that randomization such that, during
a think-aloud, students would be exposed to questions with (WD)
and without distractors (ND). Six questions from the p3dnd study
were selected, and the questions were presented in alternating order

21

https://leetcode.com/problemset/all/
https://codingbat.com/python

Figure 10: First practice problem for class-exp with a Parsons problem with distractors on the left, the solution in the middle,
and the Parsons problem source without distractors on the right

Figure 11: First practice problem in class-tog as a write code problem on the left and with the Parsons as scaffolding on the right

with respect to whether distractors were included in the question
or not (e.g. WD, ND, ...).

4.6.10 cdnd. Building upon p3dnd, we translated the study to C
to be conducted at a broader set of institutions. The cdnd study
had the same structure as p3dnd, described in Section 4.6.8, and the

same knowledge requirements. The process of translation followed
was the same as the one described in Section 4.6.7.

22

Name Acronym Country Type Size Ownership

Ashesi University ASH Ghana Private 2k Private

Berea College BEREA USA Private 1.6k Private

Duke University DUKE USA Research Intensive (R1) 6k Private

Falmouth University FALM England Regional 5k Charity

Indian Institute of Technology Madras IITM India Open 35k Public

University of Chile UCHL Chile Research Intensive (R1) 40k Public

University of Illinois at Urbana-Champaign UIUC USA Research Intensive (R1) 35k Public

University of Michigan UMICH USA Research Intensive (R1) 50k Public

University of Strathclyde USTR Scotland Research Intensive (R1) 26k Public

University of Toronto UofT Canada Research Intensive (R1) 97k Public

Victoria University of Wellington VUW New Zealand Open 20k Public

Table 7: Participating Institutions

Course Institution Intake Language Language Study

(Spoken) (Programmed) Period

Introduction to Computing and
Information Systems (CS0.5) ASH Selective English Python May 2023

Software Design and Implementation (CS1) BEREA Selective English Python April 2023

Introduction to Computer Science (CS1) DUKE Selective English Python April 2023

Data Fundamentals (CS1.5) FALM Not Selective English Python April 2023

Programming in Python IITM Qualifying Exam English Python Feb - May 23

Introduction to Programming (CS1) UCHL Selective Spanish JavaScript May - Jun 23
Introduction to Computing for
Non-technical Majors (CS1) UIUC Selective English Python Jul -Aug 23

Data-Oriented Programming (CS1.5) UMICH Selective English Python Jan 2023
Software Development (Postgraduate
Conversion) USTR Selective English Python | Java June-Aug 23

Introduction to Computer Science II (CS2) UofT Selective English C May - Jun 23
Programming for the Natural and
Social Sciences

VUW Not Selective English Python Aug-Sep 23

Table 8: Courses in Which Studies Were Situated

23

Figure 12: First practice problem in python-swap with pseudocode comment blocks that explain the algorithm

5 2023 WORKING GROUP STUDY CONTEXTS
In this section, we describe the context of each of the 13 institutions
that participated in the studies. We provide a description about the
institutions, courses, and student demographics.

As part of the onboarding process to the Working Group, the
organizers provided all members with a replication package. The
replication package included the study procedure, study descrip-
tions, study materials and sample IRBs. Each institution had to fol-
low their own institutional rules in filing their own IRB. To assure
that our data collection is consistent, our studies were developed
to use one platform, Runestone Academy [31, 64], to conduct the
studies, and this is the platform that was used with the exception of
one institution where the language of instruction was not English.
This institution used a locally developed system instead.

5.1 Ashesi University in Ghana
Ashesi University is a small English-speaking liberal arts university
in Ghana. Ashesi draws students from across Africa and beyond,
but international students for whom English was not a language of
instruction during high school submit evidence of English language
proficiency in order to be admitted. Over forty percent of Ashesi’s
students are on scholarship.

The studies were conducted as portions of a single homework
assignment in all six sections of an in-person introductory infor-
mation systems and computing course. This course is required for
first-term freshmen students pursuing any of three majors: Business
Administration, Computer Science, and Management Information

Systems. Gender balance in the course is roughly evenly split be-
tween males and females. For the vast majority of students, this
course is their first programming course, but all students in the
studies had familiarity with Parsons problems prior to the studies
because the python-swap and p3pt studies were delivered as a single
graded homework assignment via the Runestone textbook they had
used the entire term. Credit was given for participation if they spent
at least at least 5 minutes on any problem that was not correctly
solved. Of the 290 students in the six course sections, 268 submitted
some portion of the work, and 212 consented to have their data
included in the studies. The data that was analyzed includes only
the data from these 212 students.

5.2 Berea College in the USA
Berea College is a small English-speaking liberal arts college in
Kentucky that solely serves economically disadvantaged students.
Berea College is also one of nine federally recognized work colleges,
so all Berea College students work at least 10 hours per week for
the institution. The computer and information science (CIS) ma-
jor is one of the largest majors at the college with approximately
25% Female-identifying, 20% African-American, 45% other domes-
tic, and 35% international. The class-exp study was conducted as
a graded by participation only assignment in an in-person intro-
ductory computing (CS1) course which serves as the first required
course in the CIS major, often following a CS 0.5 course. All stu-
dents in the course had seen Parsons problems prior to the study
because Parsons problems are utilized in their regular Runestone
textbook, and the class-exp study was delivered via this textbook.

24

Figure 13: Second practice problem in python-swap with pseudocode comments plus code in each block

Of the 31 students in the course, only the data from the 25 who
consented to have their data used in research was analyzed, and
only the data from the 14 who completed the components was
able to be used in the final analysis. A pool of 17 students were
recruited for think aloud observation by two Berea College profes-
sors. Three of this pool were selected by meeting-time convenience
for think aloud observational studies. Then three observational
studies were conducted via Microsoft Teams. Although these three
students volunteered for these observations, they were paid for
their time through the college work program, so they earned $9.50
per hour for their time.

5.3 Duke University in the USA
Duke University is an English-speaking liberal arts private institu-
tion in Durham, North Carolina, USA. We ran a study in the course
Introduction to Computer Science (CompSci 101), a beginning pro-
gramming course in Python. 80% of the students in this course

have never programmed before or have had little programming
experience. This is the first programming course for majors, but the
course is also taken by many non-majors. This course typically has
200-300 students each semester, mostly in the age range of 18-20
years old, with approximately 50% female students. As a beginner
course, the course covers Python basics including variables, condi-
tionals, repetition, lists, tuples, sets, sorting, lambda functions and
dictionaries. The course has two lectures and one lab each week,
both are taught in person, though labs can be completed online for
those students who are absent. The course uses the online Rune-
stone textbook How To Think Like a Computer Scientist - Learning
with Python: Interactive Edition. Before each lecture, students are
assigned reading from this textbook and they must answer quiz
questions related to the reading before attending lecture.

In the Spring 2023 semester, CompSci 101 had 217 students en-
rolled in the course. We ran the study on class-exp in April 2023.
Students in CompSci 101 have used class methods such as append

25

Figure 14: Third practice problem for python-swap with just code in each block

Figure 15: The second write code problem in the posttest for python-swap

for lists, but the students have never seen a full class before at-
tempting the study. The students have had some familiarity with
Parsons problems as there are a few in the online textbook for
the course. An IRB was applied for in January and approved in

March 2023. The study was held as a complete lab, was graded (by
participation), and was required to complete by all students. Each
student was emailed an anonymous email and password to use in
the study. They then logged into Runestone to complete the lab

26

Figure 16: Third practice problem for swapping the values of two variables with just code in each block in c-swap

online, and were instructed to take about 60 minutes for the lab,
sometime during a four day period April 6-9. An email was sent
out during the four day period to ask students to complete a short
Qualtrix survey to consent or not to using their data in the study.
130 students consented to use their data, about 60% of the class.

5.4 Falmouth University in Cornwall, UK
FalmouthUniversity is an English-speaking institution in the United
Kingdom, located in Cornwall, England. The studieswere conducted
in the Games Academy, which is a multi-disciplinary department of
about 1000 students within the Faculty of Screen, Technology, and
Performance. It offers many different courses to enable its students
to come together in teams to make games. In addition to degrees in

27

Figure 17: The second write code problem in the posttest in c-swap

Figure 18: First practice problem in p3dnd as a Parsons problem with distractors on the left and without on the right

Game Development and Game Programming, it also offers a range
of degrees including Computer Science, Esports, Immersive Com-
puting, and Robotics. The students are mostly domestic (88%), with

a small number coming from the European Union (9%) or further
afield (3%). The cohort mostly identifies as male (90%), with a minor-
ity identifying as female (8%) and non-binary (2%). Nearly one third

28

Course Institution Study Enrolled Participating Voluntary Studies

Period Students Students
Introduction to Computing and
Information Systems (CS0.5) ASH May 2023 290 212 | 212 Required python-swap,

p3pt

Software Design and Implementation (CS1) BEREA April 2023 31 25 | 2 | 1 Required
class-exp,
class-ta,
p3pt-ta

Introduction to Computer Science (CS1) DUKE April 2023 217 130 Required class-exp

Data Fundamentals (CS1.5) FALM April 2023 85 32 Voluntary
python-swap,
p3pt,
classexp

Programming in Python IITM Feb - May 23 1632 50 Voluntary p3pt

Introduction to Programming (CS1) UCHL May - Jun 23 35 35 Required jspt

Introduction to Computing for
Non-technical Majors (CS1) UIUC Jul -Aug 23 989 5 Voluntary python-swap

Data-Oriented Programming (CS1.5) UMICH Jan 2023 191 155 Required class-exp
Software Development (Postgraduate
Conversion) and
Introduction to Programming with Python
(up-skilling)

USTR June-Aug 23 86 6 Voluntary python-swap

Introduction to Computer Science II (CS2) UofT May - Jun 23 150 51 | 67 Incentivised
c-swap,
p3-dnd

Programming for the Natural and
Social Sciences

VUW Aug-Sep 23 169 7 Voluntary p3pt

Table 9: Student Numbers and Studies

of the cohort declares a disability (29%) with a considerable number
of these students declaring some form of neurodiversity. There is a
low proportion of black, asian, and ethnic minority students in the
Games Academy (6.5%).

The participants are students in their first year of study (if on
our three-year programme) or second year (if on our four-year
programme with an integrated foundation year). These students
take six modules each academic year, which consist of 200 notional
hours of study which are related through a shared set of intended
learning outcomes. The python-swap, p3pt, and class-exp studies
were situated in the ‘Data Fundamentals’ module, which were de-
livered between February and May in 2023. These modules help
the students to learn to program in Python ahead of a syllabus
focused on data analysis and academic report writing. The module
typically enrolls around 80-100 students, half of which tend to have
little to no prior programming experience. These students won’t
have encountered Parsons problems or open-source ebooks yet in
their studies. The studies were integrated into the syllabus, which
had the students complete the exercises on the Runestone plat-
form during a series of timetabled synchronous one-hour, online
distance-learning sessions led by two instructors and facilitated
by Microsoft Teams. Participation was optional, with no associ-
ated grading, but strongly encouraged and presented in the same
manner as a learning activity in any other workshop. 32 students
consented to use their data.

5.5 Indian Institute of Technology Madras,
India

Indian Institute of Technology Madras is a premier science and
technology institution located in the city of Chennai, India. The
English-speaking institute has recently started a BS Programme in
Data Science and Applications that is delivered primarily online
with in-person assessments. The curriculum is split into three levels
- foundation, diploma (skills), and degree (specialization). Admis-
sion is open to anyone with K-12 education in any stream with
an in-built qualification process to assess suitability. The current
study is conducted with the students in an Introduction to Python
course (one of the foundational courses) which covers condition-
als, loops, functions, data structures, basics of file handling, and
object-oriented programming. The medium of instruction is Eng-
lish and the students have two additional English courses as part
of the programme to make them comfortable with the language
of instruction. The course is offered three times a year, and the
current set of studies focuses on the students from the January
- April 2023 batch. The cohort of students targeted for the p3pt
study were repeating the course as they failed to clear a mandatory
programming exam in the previous offering of the same course
(September - December, 2022). There were a total of 1632 students
with a female to male ratio of 30:70 and an age-range of 17 to 68
years. More than 40% of the students in this group have not had

29

a prior experience to programming language, however all of the
students have cleared a course on Computational Thinking which
is a prerequisite for the Python course. None of these students
have prior exposure to Parsons problems even though their regular
assessments have questions that involve identifying missing blocks
of code or identifying lines of code that are having either syntax or
logical errors or predicting output of a piece of code.

All the students were added to the Runestone platform by the
course instructor and they were explained about the study as part
of a synchronous session. The students who did not attend the live
session were provided with a recording of the session. The students
were provided a week (from the start of their attempt) to complete
the activity, as their programming examinations were scheduled in
the subsequent week. However this was not strictly enforced as the
study was a voluntary activity and was recommended as the first
activity to be done when they are revising Python course. A total
of 152 students consented to the use of their data for this study.

We faced the following challenges during the execution of the
study

• Since the course is delivered completely online, the biggest
challenge was in conveying the information to the students.
The information about the study was sent via asynchronous
mechanisms (Emails and WhatsApp Notifications) and more
often students either missed reading them or ignored them
completely.

• The second biggest challenge was to allow students to fa-
miliarize with the Runestone platform. While the platform
contained video and description about how to use it, the
students were more often confused about the sequence of
actions to be taken as part of the study. This required the
instructors to setup multiple sessions to explain the flow of
the pages in the Runestone platform for the study.

• We had configured another Runestone book to allow the
students to learn and practice at their own pace before the
programming exams. However, the requirement to access
different URLs were a deterrent for students to take up the
activity.

• As the participation to the study was voluntary, the students’
engagement with the various sections within the Runestone
notebook was not consistent. Many either skipped intermedi-
ate pages and directly attempted the post test or dropped off
from the study after scanning through the initial activities.

We attempted to conduct a repeat of this study with the students
from the May-August 2023 batch, however the asynchronous com-
munication channel challenge resulted in only 7 students (out of
1639 contacted) joining the initial interaction session. Though we
tried to re-schedule the session in the following weeks, the partic-
ipation trends were similar and finally we had to drop the study
completely.

5.6 Victoria University of Wellington in New
Zealand

The Victoria University of Wellington (VUW) is English-speaking
institution, with the studies commencing in July 2023 (Semester 2)
as non-compulsory activities. The course delivery is in-person and
using Python. This institution typically have traditional student

cohorts in first-year programming courses. Recruitment was done
by a representative from the research group, speaking of the study in
the lecture a week before the start of the study. The same researcher
sent out three emails to encourage participation: two emails were
sent before the start of the study and one reminder during the
two-week period the study was open for participation.

At VUW, we conducted the study in one first-year course for
Natural and Social Sciences majors, teaching programming funda-
mentals that perform basic operations on data sets, such as pro-
cessing, transforming, analyzing, and presenting data. This course
is designed for students with no background in programming. For
this course, we had the student participate in the p3pt study. This
course had 169 enrolled students, with seven (4%) students con-
senting to their data used in the study. We did not determine the
reasons for the low student participation rate and we did not follow-
up with them to determine the cause. Further work is required to
understand the low participation from this institution.

5.7 University of Chile in Chile
We conducted jspt with a sample of 35 non-professional students
(aged between 24 to 55 years old, 70%-30% male-female gender dis-
tribution) enrolled in an online bootcamp, who took an introductory
course on computational thinking and programming. These stu-
dents did not have any sort of formal background in STEM-related
fields, particularly in computer science.

In this group, students were exposed to Parsons problems as an
explicit scaffolding strategy of instruction. However, these Parsons
problems were not adaptive. The study took place in the form of a
hands-on practical session assisted virtually by a team of trained
teaching assistants; therefore, participation was required (although
not graded). Consequently, the running experiment was conducted
as a required assignment during a lab session after the notions of
unit testing, conditionals, iteration (for and while loops), lists, and
strings were all covered in lectures. Due to the difference in context
setting, besides collecting quantitative measures of performance
(such as the number of tries or average time spent in producing
a correct answer), we conducted exit interviews aiming to better
understand how Parsons problems could effectively provide scaf-
folding to (very) novice programmers when exposed to writing
code.

Given that in the University of Chile there is no formal require-
ment of mastering English as a foreign language at the under-
graduate level, the study was run in Spanish. Resonating with the
challenges of conducting MIMN studies previously identified by
McCracken et al. [63], several procedures were followed to ensure
that the studies were correctly translated into the target language.

5.8 University of Illinois at Urbana-Champaign
in the USA

TheUniversity of Illinois at Urbana-Champaign (UIUC) is an English-
speaking institution located primarily in Urbana, Illinois. The stu-
dent population for these studies is from an introductory Python
course that is specifically for students from non-technical majors
who typically have limited prior experience with programming.
The class covers the basics of programming in Python in addition

30

to file manipulation and an introduction to building classes. Be-
yond Python, it covers the basics of HTML and several topics in
Microsoft Excel. It has historically consisted of primarily freshmen
and sophomores (18-20) and has a roughly even split between men
andwomen. Students are familiar with Parsons problems as they are
used on both formative and summative assessments in the course.
We will conducted think-aloud interviews with five students to
provide a qualitative lens in answering the research questions asso-
ciated with each of these studies. Students were recruited via email
from past semesters in the course. Participation in these interviews
was completely voluntary and students are compensated at a rate
of $15 dollars an hour. Interviews are to be conducted online in a
recorded Zoom session wherein participants were asked to share
their screen while they complete the problems.

5.9 University of Michigan in the USA
The University of Michigan in the USA is an English-speaking
research-intensive institution in Ann Arbor, Michigan, USA. We
ran an early version of class-exp with four practice problems and
four post-test problems in a second required programming course
for School of Information majors in the winter semester of 2023,
which runs from January to April. This course had 191 students
and is usually about 40% female but does not have a high percent-
age of people from minoritzed groups. It covers Python basics,
object-oriented programming basics, regular expressions, unit tests,
debugging, and working with data from files, websites, APIs and
databases. Students are familiar with Parsons problems as they are
used in interactive readings and as active learning assignments in
lecture. We ran the study during lecture in the first month of the
course and 155 students completed the study. Students received
points for attempting the study, they did not have to get the prob-
lems correct to earn the points. Based on the results from this study,
which did not find any significant difference between conditions
on learning performance, we added another practice problem and
post-test problem to class-exp.

5.10 University of Toronto in Canada
The University of Toronto (UofT) is an English-speaking institution
with three campuses located in Toronto, Canada. Our studies were
conducted in one of the three campuses in a CS2 course during the
Summer 2023 semester. The course was delivered in-person and
using the C language. CS2 is a mandatory course for students wish-
ing to pursue a computer science program, however, some students
from other departments (management, neuroscience, statistics) can
take it as an elective. In order to be enrolled in the course, students
had to successfully complete CS1, which is delivered in Python.
During the Summer semester, 70% of students were in the computer
science program, and 75% of the students were in their first year
of studies. Students ranged from 18 to 22 years old, where 60%
identified as men and 24% identified as women. UofT is known
for its diverse and multi-cultural population, where only a third
of students are domestic. Around 5% of students mentioned that
their levels of understanding spoken and written English is below
average.

In this course, students learn about C syntax, the memory model,
pointers, linked lists, abstraction, graphs, and recursion. At the

beginning of the semester, students were informed about two bonus
marks opportunities that would come up during the semester as
online activities. The completion of each study rewarded students
with one bonus mark for their midterm test. To recruit students for
each study, the course instructor made an announcement in the
course’s discussion forum. Students were given one full week to
complete each study. The first study, c-swap, was conducted after the
thirdweek of the course after students got introduced to how strings
work in C. The second study, c3-dnd, was conducted after week 6 of
the course when students have seen strings, conditionals, memory
model, loops, functions, structs and compound data types in C.
For the first and second studies, we collected 51 and 67 responses
respectively.

5.11 University of Strathclyde in Scotland
The University of Strathclyde is an English-speaking institution
in Glasgow, Scotland, UK. We ran non-compulsory think aloud
observations with python-swap that acted as an assessment alter-
native in an introductory Python programming module offered
fully online and asynchronously by the Department of Computer
and Information Sciences as part of the University’s Upskilling
Programme, which was delivered from January to August. This
module had 35 learners, and it covered Python basics, iteration,
conditions, unit testing, and basic data types and structures, but no
object-orientation. Learners were not familiar with Parsons prob-
lems. Demographically, the cohort included learners aged from 26
to 50, with a gender balance split of 65% males and 35% females,
and a split of 13% international and 87% home learners. We also
ran python-swap as non-compulsory think aloud observations by
recruiting volunteers from the Department’s MSc in Software Devel-
opment conversion course, which ran (on-campus, synchronously)
from September to August. This course had 51 students, and it
covered both Python and Java: basics, iteration, conditions, unit
testing, inheritance, library classes, and APIs, polymorphism, and
basic data types and structures. Students were not familiar with
Parsons problems. Demographically, the cohort included students
aged from 22 to 60, with a gender balance split of 67% males and 33%
females, and a split of 35% international and 65% home students.
For both cohorts, the majority of students joined the courses with
no prior knowledge of programming, and all international students
had a command of the English language equivalent to IELTS 6.0 or
higher, both spoken and written, as this is an entry requirement
for our courses. All think aloud observations were conducted over
Zoom on a one-to-one basis, and participants were recruited by
emailing the relevant students using their cohort-specific emailing
lists.

6 RESULTS
This section describes the results from our studies. Section 6.1
presents the findings of our think alouds while Section 6.2 describes
our findings running the studies in computing courses at many
multi-national institutions.

6.1 Think Aloud Observations
We conducted think aloud observations at four institutions: Berea
College, the University of Illinois, the University of Strathclyde,

31

Interview ID
Generally I have felt secure about
attempting computer programming
problems.

I am sure I could do
advanced work in
computer science.

I am sure that I
can learn programming.

I think I could handle
more difficult
programming problems.

I can get good grades
in computer science.

I have a lot of
self-confidence when it
comes to programming.

class-ta 1 1 4 4 5 4 4
class-ta 2 5 5 5 5 5 3
p3dnd-ta 2 4 4 3 5 3
python-swap-1 4 2 4 4 4 3
python-swap-2 5 4 5 4 5 4
python-swap-3 5 3 5 4 5 3
python-swap-4 3 2 4 3 4 2
python-swap-5 4 2 4 3 4 4
python-swap-6 3 3 5 3 4 4
python-swap-7 4 3 5 3 4 2
python-swap-8 1 1 4 4 2 2
python-swap-9 4 2 5 4 4 4
python-swap-10 4 3 5 4 4 4
python-swap-11 4 4 4 N/A 4 4
jspt-1 1 2 3 3 2 2
jspt-2 4 5 5 4 5 5
jspt-3 3 4 4 4 4 4
jspt-4 3 4 4 4 4 4
jspt-5 4 4 5 4 4 4
jspt-6 2 2 2 2 2 2
jspt-7 2 2 4 2 4 3
jspt-8 3 2 4 2 4 2
jspt-9 4 4 5 5 5 4
jspt-10 2 1 5 2 2 1
jspt-11 4 4 5 5 5 5
jspt-12 3 3 4 4 4 4

Table 10: Responses to the general pre-survey questions for all think-aloud studies. Responses were collected on a 5-point
Likert scale (1) strongly disagree to (5) strongly agree.

and the University of Chile. In the following descriptions of the
think aloud observations we do not specify the institution in order
to protect the anonymity of the participants. However, we describe
the participant in order to provide the context, if the institution’s
ethics (IRB) approval allowed us to share this information. Each
think aloud was a video-conferencing session that we recorded and
transcribed for analysis.

In this section, we describe noteworthy points from the think
aloud observations to better understand the student experience, per-
ceptions, and thinking processes. We also explain how the Parsons
problems and the assessment tool’s user interface either helped the
participants improve their understanding of the problem or gen-
erated challenges for them when solving a problem. By reporting
on the think aloud observations, we add a qualitative dimension to
the associated quantitative studies, enabling us to go deeper into
how the Parsons problems support the learning process. For the
remainder of this section, we present the results of the Parsons
problem studies. Section 6.1.1 presents the think aloud results from
the python-swap study. Section 6.1.2 describes the class-ta study
results, while Section 6.1.3 presents the p3dndta study. We conclude
with Section 6.1.4, discussing the results of the jspt study. We pro-
vide a detailed description of the think aloud studies in Section
4.6.

6.1.1 Think Aloud Observations: python-swap. This study had stu-
dents learn about the swap algorithm by solving three Parsons
problems 1) the first with just pseudocode comments that described
the algorithm, 2) the second with pseudocode comments and code,
and 3) the third with just code. A total of 11 students participated
in think aloud observations.

One of the participants (i.e. python-swap-6) exhibited difficul-
ties completing the “Introduction to Problem Types“ section for

Student Setting the value of a variable like: x = 4 Swapping the values of two variables
so that var1 has the original value of var2
and var2 has the original value of var1

python-swap-1 4 3
python-swap-2 4 4
python-swap-3 4 3
python-swap-4 4 4
python-swap-5 4 2
python-swap-6 4 4
python-swap-7 4 4
python-swap-8 3 3
python-swap-9 4 3
python-swap-10 4 4
python-swap-11 4 4

Table 11: Responses to questions on the python-swap presur-
vey asking students to rate their familiarity with the con-
cepts of setting variables and swapping. Responses were col-
lected on a four-point Likert scale (1) strongly disagree to (4)
strongly agree.

introducing the Parsons problems and code writing problems, as
described in Section 4.3. In particular, this participant began strong
in completing the first problem type, which involved arranging
blocks without indentation, in a single attempt. However, when
beginning the second problem type, which involved arranging and
indenting blocks, the participant faced several challenges which
might be attributed to two main factors: lack of experience with
the UI of the Runestone platform and/or a lack of familiarity with
the concept of indentation in Python. Regarding the first factor, the
participant’s first attempt involved adding in only one (i.e. “First
block”) of the required three blocks using indentation (not required
for this block), and clicked the “Check” button. Regarding the sec-
ond factor, upon reading the feedback after the first failed attempt
the participant used all three required blocks in the correct order,

32

Parsons problem 1 Parsons problem 2 Parsons problem 3 Write Code 1 Write Code 2

python-swap-1 5 2 1 1 1
python-swap-2 4 1 1 1 1
python-swap-3 1 1 1 1 1
python-swap-4 5 2 2 5 1
python-swap-5 3 1 1 1 1
python-swap-6 9 4 1 8 1
python-swap-7 1 1 1 1 1
python-swap-8 2 1 1 1 1
python-swap-9 6 2 2 2 1
python-swap-10 1 1 1 1 1
python-swap-11 2 1 1 1 1

Table 12: The problems in the order students were presented them during the think aloud interviews for python-swap and the
number of attempt on each problem. One trend that emerged was that, for students with a higher number of attempts on the
first Parsons problem, the number of attempts on the subsequent two decreased, and these students were very successful on
subsequent code-writing tasks.

but failed to indent the final block, and most likely ignored the feed-
back on how to fix the issue with indentation. This was followed
by a series of failed attempts, with the participant using either two
of the three required blocks and indentation in one attempt or all
three required blocks and indentation, but with the wrong block
ordering and/or wrong indentation, in four attempts. In particu-
lar, during these five failed attempts: the interviewer prompted
the participant to use the “Help me” button but upon reading the
generated feedback the participant experienced another failed at-
tempt, which was followed by the interviewer’s further advice to
read the generated feedback carefully and also think about what
“indentation” meant. Upon receiving this advice, the participant
started to realise that the third block had to be indented. However,
they placed the third block at the top, with the other two blocks
intended below. Despite these initial difficulties with this problem
type, the participant completed the third problem type, which also
involved indentation, in a single attempt. Although this may be an
indication that the second problem type was successful in teaching
the participant the concept of indentation and/or the indentation
element of the UI, the degree of difficulty faced by the participant in
overcoming this initial challenge was still large. There was a video
that demonstrated how to solve a Parsons problem that did showed
how to indent the lines. However, that video didn’t show the type
of feedback that is displayed when just the indentation is wrong.

Before completing the think aloud observations, all participants
indicated that they were comfortable with setting a variable equal
to a value. However, there was mixed stated familiarity with the
concept of swapping variables. We observed three common themes
from the participants: confusion over the role of the temp variable,
an increase in understanding of the swap algorithm, and difficulty
organizing the pseudocode comment blocks. We describe each of
the three themes further.

Confusion over the role of the temp variable: In completing the
practice activities, three participants indicated confusion over the
role the temp variable has in the swap algorithm. For example,
participant python-swap-1 claimed the problem could be solved
with the following two Python statements:

1 x = y
2 y = x

After five attempts on the first Parsons problem (Table 12), the
participant completed it and used the solution from this problem
to solve the rest of the Parsons problems since they were all on
the same page. Unfortunately, the participant remained confused
over the role of the temp variable. During the first code-writing
activity, the participant attempted to solve it without using the
temp variable, but that did not work. The participant next used the
CodeLens tracing tool and realized that their mental model of the
solution was incorrect. However, they were unable to recall the
exact solution from the Parsons problems. Instead they created a
solution that used two temp variables:

1 temp1 = x
2 temp2 = y
3 y = temp1
4 x = temp1

Another participant, python-swap-4, also struggled to recall the
Parsons problem solution while writing the code. After the think
aloud, the interviewer asked the participant python-swap-4 to
reflect on the Parsons problem and code-writing activities. Below
is a portion of the participant’s self-reflection, stating:

python-swap-4 - I just felt really annoyed because
I wanted to do it how the Parsons problems were
because I feel like that’s what the whole point was,
was that I learned it in Parsons and then replicate that
solution. But because it wasn’t making sense to me
before and then I forgot everything that I had done.

For participant python-swap-4, the issue appeared to be that they
could not resolve their initial misconception that swapping could be
performed without using a temp variable. However, it is noteworthy
that they resolved this misconception in the code-writing activity
by recalling the temp variable from the Parsons problems.

Participant python-swap-6 also struggled to solve Parsons prob-
lem 1 due to their initial misconception that swapping could be
performed by replacing the value of x by y (x = y) before the

33

use of the temp variable. The participant demonstrated a similar
misconception in the first write code problem by trying to solve it
in a single line without using the temp variable, i.e. x = y. After
the interviewer observed several incorrect attempts by the partici-
pant, the interviewer prompted them to recall the previous Parsons
problem activities and to compare the number of lines used in the
previous solutions.

interviewer - ... try to recall how many steps you
had in the previous page in terms of doing the actual
swap...Do you remember how many further steps you
had? At the moment, you have only one line.
python-swap-6 - Okay.

Participant python-swap-8 indicated initial confusion with the
temp variable in the first Parsons problem activity with pseudocode
comment blocks. During the think aloud, the participant vocalized
their confusion with the temp variable since it was not declared in
the problem description. As a result, the participant attempted a
three-block solution (shown below), excluding the two blocks with
the temp variable.

1 # initialize the variables
2 # set x to the value of y
3 # set y to the value of x

The participant stated:

python-swap-8 - . . . Because there is nowhere that
mentions temp . . . I am trying to figure out the odd
one out almost . . . I just need three pieces of the five
pieces of code.

The interviewer and participant discussed the problem, which
helped the participant realize the temp variable is in two lines of
the code, demonstrating to the participant that their initial mental
model of the solution could not lead to a correct solution. The
discussion also highlighted the presence of the temp variable in
the first line, “Initialize the variables”. However, the use of this
variable continued to confuse the participant. After the discussion,
the participant constructed an incorrect solution using four lines of
code: the last line y = x, instead of the correct statement y = temp.
However, upon completion, the participant identified the issue and
adjusted the last line of code to produce a correct solution in their
second attempt.

Positive influence with understanding the swap algorithm: Par-
ticipants involved in this think-aloud study reacted positively to
learning the swap algorithm by solving Parsons problems before
writing code. Participants indicated that the Parsons problems sup-
ported their understanding of the algorithm and felt they would not
have been able to solve it on their first attempt successfully with-
out it. The following three quotes came from think alouds where
the participants perceived the Parsons problems supported their
understanding of the swap algorithm.

python-swap-1 - All right, I’d definitely say the Par-
sons, if you put me directly into the code, I probably
wouldn’t have been able to figure it out. I think the
Parsons kind of gave me the general format and how
it’s supposed to be completed.

python-swap-7 - I mean that I think I was aware
of that coming in, I mean the process of swapping
two values... Had you just given me this last bit at
the start [the code writing problems]. I would have
got it wrong at least once then had to work out what
I’d done wrong. But by doing the blocks [Parsons
problems] before hand has made it a lot clearer in my
head.

python-swap-8 - I would say the second one on the
previous page [i.e. Parsons Problem 2 - pseduocode
comment blocks plus code] was a good introduction
to them, this one here [i.e. Write-code Problems].

Some participants expanded on how the Parsons problems sup-
ported their understanding. Below are three excerpts from think
alouds demonstrating how Parsons problems helped them.

python-swap-5 – It’s just, it [swapping] feels con-
densed, almost like, like the whole Parsons problems.
It’s now just one step with the entire code, if that
makes sense. Yeah, the Parsons problem exists from
line 11 to 13 [in the code writing problem].

python-swap-8 - But this one [i.e. Write-code Prob-
lem 1] was extremely valuable without having the
code in front of me. If I’d had the previous piece of
code [i.e. Parsons Problems] in front of me, I wouldn’t
have thought it through to the same extent as what
I did there [i.e. Write-code Problems]. I have more
understanding by almost having to just figure it out
myself, but . . . you’ve had some previous insight into
it from what I did in the previous page [i.e. Parsons
Problems]. But it’s not that I could recall that, but
helped me thinking: Okay, there’s a temp variable,
and this kind of thing. So yeah.

python-swap-9 - So, I’m comparing writing the code
to the last [i.e. Write-code Problems] to the previous
exercises [i.e. Parsons Problems]. I was clicking and
dragging. And I think that if you are just approaching
that problem [i.e. swapping] for the first time, it’s
easier to click and drag [compared] to written code
because it’s like multiple choice in it. But if you are
writing code for the first time it’s probably more to
work out to know what’s involved.

Their statements suggest that the Parsons problems were suffi-
ciently effective at helping the participants understand the swap
algorithm. In particular, participant python-swap-5 internalized
the process taught via the Parsons problems as a single “chunk”
and was able to transfer their mental model of the solution to the
code-writing activities.

Difficulty organizing the pseudocode comment blocks: We ob-
served that participants needed additional support with organizing
the pseudocode comment blocks. For example, python-swap-2 ini-
tially struggled with the problem with only pseudocode comment
blocks, resulting in the participants getting the problem wrong
several times. When encountering a Parsons problem activity with
code, one participant stated “this is the way I would have done it. . .

34

showing code rather than the description”. When asked to reflect on
their work completing the activities, a participant stated:

python-swap-2 - I think having code written out
[code blocks] rather than just the descriptions [pseu-
docode comment blocks] is a lot easier for me at least,
like, um, when it’s just the descriptions, it’s kind of
hard to follow in my head. But then if I have code,
whether it’s with the description or with out the de-
scription, seeing code is a lot easier

Participantpython-swap-2 is an engineeringmajorwho claimed
they previously taken an advanced CS course, yet still enrolled in
the CS1 course involved in this study. The sentiment about pseu-
docode comment blocks was also echoed by other participants,
which we highlight in the following two think-aloud excerpts:

python-swap-5 - Yeah, it was very hard to like put
words or put the word turn the words into like a code
that I was like, used to like working with. So kind of
coding by words was very hard for me.
python-swap-4 - Yeah, it was just kind of weird be-
cause I’m like if it just showed me the code, I would
have been able to do it right away. But seeing the
higher level descriptors I’ve never done Parsons prob-
lems like that before so I think I just need to adjust
to it. Like I’m used to more like this where it’s like, it
might have a comment but it’s showing you what the
code looks like.

The participants’ opinions on pseudocode comment blocks may
be because it is the study’s first practice Parsons problem. We
observed participants preferring subsequent activities, such as par-
ticipant python-swap-10 expressing the second problem with
pseudocode comments plus code was more approachable in com-
parison to the first, stating:

python-swap-10 - . . . I think I find the version with
the comments actually a little bit harder. I found it’s
a bit more abstract. . .Also affected by the fact that is
the first time I see that problem in this exercise [i.e
swapping].

Other participants also preferred the second Parsons problem
containing comments and code. Below are three excerpts from
python-swap participants expressing their preferences.

python-swap-8 - . . . This one here [i.e. Parsons Prob-
lem 2 - pseduocode comments plus code blocks]. The
first one [i.e. Parsons Problem 1 - pseudocode com-
ment blocks] for me is much harder to figure out. . . So,
I think the detail within this one [i.e. Parsons Problem
2 - pseduocode comments plus code blocks]. I find it
easier to comprehend when there’s values assigned
to variables rather than just the name of the variable.
python-swap-9 - . . . Code and comments is easi-
est. . . the second version [i.e. Parsons Problem 2 - pse-
duocode comments plus code blocks], . . . as you can
actually see the values. It’s easy to relate it.
python-swap-11 - . . . For example, I do not have
comments on paper [this participant used pen-and-
paper to produce a solution to Parsons Problem 1 -

pseudocode comment blocks]. If I had the comments
on paper, maybe it would have been a little easier.

The results from the python-swap study provided evidence that
solving Parsons problems with distractors can help students over-
come common misconceptions and learn common algorithms, like
swapping variables. However, we need to investigate further how
the presentation order of the three types of Parsons problems im-
pacts their learning and understanding of these concepts.

6.1.2 Think Aloud Observations: class-ta . This study had students
solve Parsons problems with and without distractors and then write
and fix code with similar errors to the distractors. Two think-aloud
observations were performed with students from Berea College
using the class-ta study. Due to the low number of participants we
follow the approach of student biographies and narrative interview
overview used by Haynes-Magyar and Ericson [43] when reporting
the results of these two think-aloud observational studies.

Participant class-ta-1 Biography: The participant class-ta-1 is a
19-year-old rising sophomore male student majoring in computer
science. Although English is not the language that he speaks at
home, he rated his ability to read and understand spoken English
as good. He had completed a CS1 course in Python at the time
of the think aloud, where his CS1 used Runestone with Parson
problems activities. As a result, the participant was highly familiar
with Runestone’s UI and with Parsons problems.

class-ta-1 Results: This student was highly engaged and made
numerous statements about components he found helpful in Rune-
stone during his CS1 course. His previous experience with Rune-
stone provided him with a high level of understanding of the plat-
form. He could explain the UI in-depth as if he were explaining to
a peer. For example, he said,

class-ta-1 - Here we have a video, like from YouTube,
so if we want we can just watch it and get like a bit a
better understanding of the concept so... Right now
we don’t have to watch it like so we can just go to the
next section, but if we want to we we can just click
it... So basically those videos are I believe embedded
from YouTube to run.

The interviewer encouraged him to engage with the activity as
if he were working independently. However, vocalizing his actions
during the think aloud may have interfered with his focus on the
intended scaffolding of the study’s Introduction to Problem Types
and Creating Classes sections.

On the first Parsons problem, he initially failed to notice that he
had chosen both paired distractors. After seven attempts at solving
the Parsons problem, he correctly solved it, saying:

class-ta-1 - So, basically what I did was first like I run
the the code blocks, and I was able to see my mistakes.
Then I read the section that tell me which things I
make wrong, and I was able to notify my mistake.
And, then basically I just fixed it.

With the second Parsons problems activity, the participant cor-
rectly solved it after two attempts.With the third and fourth Parsons
problems, he successfully solved them in one attempt. Afterwards,
he stated:

35

class-ta-1 - On the first and second problems, I was
trying to do everything at the same time. I was just
trying to plug like you know everything at once. But
when when it’s come to the third and the last,... it’s
really helpful to do each things like step by step the
state of trying to do everything at once.

Despite his increased success in solving the Parsons problems,
participant class-ta-1 was unable to solve the code-writing activi-
ties. During these code-writing activities, he expressed confusion
over the self keyword and conflated the use of self with whether
or not a type conversion would be needed.

Participant class-ta-2 Biography: Participant class-ta-2 is a 21
male rising junior majoring in Computer Science. English is one
of two languages he speaks at home. Before the think aloud, he
reported high confidence in his Python programming ability. How-
ever, after the think aloud, he acknowledged that he recently took
a CS2 course in C++, so he had not worked with Python for at
least six months. The participant reported that the time away from
Python made it challenging to remember the programming syntax.
His CS1 and CS2 courses utilized Runestone textbooks, so he was
highly familiar with the UI and with Parsons problems. However,
he had not previously seen a toggle problem that included code
writing, which contained a feature that pops up a Parsons problem
as scaffolding.

class-ta-2 Results: Overall, the participant progressed quickly
through the lesson pages presented in the study and with relative
ease. His first point of error came when selecting between a cor-
rect block (Class Song:) and its visually paired distractor (class
Song:). After choosing the distractor and before testing his solution,
he reflected on his decision, stating:

class-ta-2 - Newer programmers like me at least don’t
pay a lot of attention on which letter is a capital letter
and so on so forth... Generally, since the IDEs, like
you know, PyCharm and other programs like that...
when you write something it just fixes it for you. ...
I’m pretty confident that it is a capital ‘C’.

After he finished arranging his choice of fragments to form a pro-
gram, he tested his solution and exclaimed:

class-ta-2 - It says that this is wrong... So if I change
it with this, oh, oh! So, the ‘c’ is Okay. I will never
forget that ever again! All right, so the ‘C’ is upper
case... I will never forget that ever again!

The participant’s exclamation provides an example of a student
being startled into a period of reflection when selecting between
a correct block and a distractor block containing a common error
made by novices. Additionally, the participant had a highly positive
reaction to the result of the interaction, generating self-reflection
that suggests an effective distractor may have encouraged his rec-
ollection of the correct syntax.

The next two Parsons problems went smoothly for him. Unfortu-
nately, after spending several minutes on the FortuneTeller Practice
Problem, he could not solve it before moving on to the posttest.
He first realized he was supposed to make a class and began cre-
ating an initializer. Without finishing the line of code containing
the initializer, he asked, “Uh, is it OK for me to just tell my friends

to be a little bit quieter for a second?” The interviewer responded,
“They’re not bothering me. But if it if it’s more helpful to you to do
that, that’s fine.” He replies, “Yeah, it’s just they’re being a little loud.
I don’t know if you can hear from the microphone, but I can hear
them.” He got up, opened his door and spoke into the hallway. This
distraction potentially contributed to the challenges he next faced.
The interviewer encouraged him to take his time to arrange his
thoughts. He next re-read the problem statement while highlighting
it with his cursor. Then, before he could type, his calculator popped
up for some reason, and he quickly closed it. Before executing his
coded solution, he said, “this might be wrong”. The response from
Code Coach was blank. However, the test response to his solution
generated the error message “Error: Maximum Call Stack Exceeded”.
The following code segment came from the participant’s solution.

1 class FortuneTeller:
2 def __(self , f):
3 self.f = f
4 def tell_fortune(self , f):
5 self.f = FortuneTeller(["You will get an A", ...])
6 ...

The participant proceeded to make several changes in this work
using CodeLens on his iterative solutions. However, despite the
interviewer encouraging the participant to reflect on the problem’s
name, toggle, he moved on to the posttest without realizing he
could pop-up a Parsons problem as scaffolding. This interaction
highlighted a potential problem with the UI presenting the key-
word toggle for additional support. This keyword might not be
sufficiently clear to the students.

On the first problem on the Post Test, he struggled to build a
correct __str__method because he had added two parameters, but
was not using them. He requested assistance from the researcher
and with some help, he then was able to articulate differences
between parameters and instance variables. After this, he solved
all of the remaining post test problems without seeking further
assistance.

He then indicated that he wanted to return to the FortuneTeller
problem to attempt it again. This time, the interviewer helped him
use the toggle problem type, which supported him to solve the
problem independently.

6.1.3 Think Aloud Observation: p3dndta . The p3dndta study is
a version of p3pt without distractors that is specifically designed
for think-aloud observational studies. See Section 4 for the study
design.

p3dndta-1 Participant Biography: We conducted the study with
participant p3dndta-1, a 19-year-old female rising sophomore ma-
joring in computer science. English is her second language, and she
rated her ability to read and understand spoken English as very
good. Her CS1 course utilized a Runestone textbook, so she had
experience with the platform’s UI and Parsons problems. However,
she had no prior background in using adaptive Parsons problems,
combining pseudocode comment blocks and removing distractors.
She disclosed during the study that she has high-functioning anxi-
ety.

p3dndta-1 Results: Overall, the participant progressed through
most of the study quickly, with the first challenge occurring in the

36

Student Creating classes like class Person: and
objects like p = Person("Barb Ericson") Methods like __init__ and __str__ The use of self in class Defining instance variables like

self.color = color

class-ta-1 4 4 5 5
class-ta-2 5 5 5 5

Table 13: Responses to the pre-survey questions specific to the class-ta study. Responses were collected on a 5 point Likert scale
(1) strongly disagree to (5) strongly agree

Student Loops/Iteration like for n in nums:
and for i in range(4):

Conditionals/Selection Statements
like if x < 3:

Functions like
def get_odd(nums): Lists like a = [1, 2, 3]

p3dndta-1 3 4 4 3
jspt-1 2 3 2 2
jspt-2 3 3 3 4
jspt-3 4 5 4 4
jspt-4 3 3 2 3
jspt-5 4 5 4 5
jspt-6 2 3 2 2
jspt-7 3 3 2 3
jspt-8 2 2 2 2
jspt-9 4 5 4 4
jspt-10 2 2 3 2
jspt-11 4 5 4 4
jspt-12 4 4 4 4
Table 14: Responses to the pre-survey questions specific to the p3dnd and jspt studies. Responses were collected on a 5-point
Likert scale (1) strongly disagree to (5) strongly agree

Introduction Section and continuing to the Problem Types Section.
The Problem Types section contained a code-writing activity asking
the participant to program the function triple(num) that takes
a number variable, num, and returns that number times three. She
succeeded after five attempts. Upon completion, she reflected:

p3dndta-1 - The Code Coach is very helpful because
it points out some possible solutions for students.

The participant solved all six Parson problems correctly within
two and thirteen attempts. She seemed delighted by the “Help Me”
button on the adaptive Parsons problems, stating:

p3dndta-1 - I learned a lot from the combined blocks.
It was truly, truly helpful... I really appreciated the
help me (button)!

The participant attempted to solve the first code-writing activity,
asking her to write a function called is_descending(num). The
function returns True if the numbers in the nums list are sorted in
descending order; otherwise, the function returns False.

For the code-writing activity, the participant implemented the
line for num[i] in len(num) to iterate the loop on line 3 of her
solution. Unfortunately, her solution generated an error, “SyntaxEr-
ror: bad input on line 4”. Because the error referenced the proceeding
line (line 4), the message did not provide sufficient help to support
her to solve the activity successfully. She did not attempt additional
code-writing activities.

6.1.4 Think Aloud Observations: jspt . The jspt study used in the
think aloud is a variant of the Python p3pt studywritten in JavaScript

instead. The description of the JavaScript jspt study design is in
Section 4.6.2.

About 25% of the study participants (4 out of 12) completed
all of the study sections. The results from the participants’ data
showed they had a favorable view of the Parsons problems. For
example, they valued that the initial practice Parsons problems
helped them plan and design a solution. The Parsons problems
allowed the participants to consider the function’s purpose and
unit test cases. Likewise, the drag-and-drop feature of Parsons
problems allowed most of the participants to understand better the
code-writing activity they attempted to solve despite their lack of
awareness that the Parsons problems and code-writing activities
were isomorphic.

Some participants did not complete all the problems in the study.
The most frequent reasons were:

• Lack of time. For example, participant jspt-3 stated “the
activity was too long and I didn’t manage to work in the last
exercise”.

• Fragile knowledge of lists and arrays. For example, partici-
pant jspt-8 stated, “I didn’t understand how to choose between
the two blocks of code: both seemed exactly the same to me”.

• Anxiety. For example, participant jspt-6 stated, “I felt quite
overwhelmed by the end, so I decided to drop out and let it go...
This is so frustrating and it only shows me that I need to work”.

The sentiments expressed by the three participants demonstrate
factors that contributed to them not completing the majority of the
code-writing activities, even though they were isomorphic to the
Parsons problems. Furthermore, one participant pointed out that

37

Student Parsons problem 1 Write-code 1 Parsons problem 2 Write-code 2 Parsons problem 3 Write-code 3 Parsons problem 4 Write-code 4
jspt-1 Attempted Attempted 17 Attempted 24 Did not attempt Did not attempt Did not attempt
jspt-2 3 Solved Attempted Solved 4 Solved Did not attempt Did not attempt
jspt-3 1 Solved 5 Attempted 4 Solved 6 Did not attempt
jspt-4 5 Attempted Attempted Did not attempt Attempted Solved with Assistance Did not attempt Did not attempt
jspt-5 3 Solved 2 Solved 2 Solved 2 Solved
jspt-6 Attempted Did not attempt 7 Did not attempt 11 Did not attempt Did not attempt Did not attempt
jspt-7 2 Solved 8 Did not attempt 10 Solved with Assistance Attempted Did not attempt
jspt-8 Attempted Did not attempt 8 Did not attempt Attempted Did not attempt Attempted Did not attempt
jspt-9 4 Solved 1 Solved 3 Solved Attempted Did not attempt
jspt-10 1 Solved 2 Did not attempt 6 Solved with Assistance 5 Did not attempt
jspt-11 2 Solved 2 Solved 5 Solved Did not attempt Attempted
jspt-12 4 Solved 3 Solved 7 Solved Attempted Attempted

Table 15: Student coding attempts and successes in jspt

they felt less anxious while solving Parsons problems and were
disinterested in completing the code-writing activities.

Finally, it is worth pointing out that none of the participants—
even those who completed the study, reported high self-efficacy, and
a medium-to-high pre-knowledge of the concepts covered—realized
that problems in both parts of the study were isomorphic. This
implies that study participants have not mastered yet, or at least
still have some work to do, in developing a mastery of abstraction.

6.2 Quantitative Experimental Studies
In this section we describe the Parsons experimental studies that
we ran. We ran several different studies at several institutions.

6.2.1 python-swap. Quantitative studies were conducted at Fal-
mouth and Ashesi Universities. Figure 19 shows each cohorts’ re-
spective familiarity with programming a variable swap and their
self-efficacy with computer programming. Both cohorts reported
they were familiar with the notion of swapping variables. Falmouth
University students reported being more familiar perhaps due to
being in a CS1.5 type of course vs the Ashesi CS0.5 type. The co-
horts had broadly similar distributions of programming self-efficacy,
with Ashesi University students skewing towards more confident
they could successfully complete the task, though this was not a
statistically significant difference (𝑡 = −.56, 𝑝 = 0.57).

Figure 20 illustrates the correlations between these two attitudi-
nal variables with the number of attempts required to reach success.
As might be anticipated, the strongest correlation was between
their reported self-efficacy and their score on the final code writing
problem (𝑟 = 0.41, 𝑝 = .024). There was a notable negative rela-
tionship between their self-reported familiarity with swap and the
number of Parsons problem-solving attempts, which was consistent
across both contexts. The more familiar, the fewer attempts needed
(𝑟 = −0.37, 𝑝 < 0.5). This suggests that those students who have en-
countered swap before were able to apply their experience readily
to solve the Parsons problem with fewer attempts than peers who
were less familiar. However, this familiarity with the swap exercise
was not correlated with the number of code-writing attempts, with
a magnitude close to zero (𝑟 = 0.1) in both contexts (𝑝 = 0.38).
Crucially, there was no correlation between those students suc-
ceeding on the final code-writing task and their familiarity with
the value-swapping problem (𝑟 = .054, 𝑝 = 0.77). This implies that
the Parsons problem practice was able to close the experience gap

between those who were familiar with the algorithm and those
who were not.

Analysis of time-series data relating to each task (starting with
intro-simple-parsons-no-indent, the introductory tasks, pro-
ceeding to ps_swap_comments_pp, the practice with parsons prob-
lems, and concluding with ps-swap2-ac, the final code writing
exercise) illustrates favorable retention. Figure 21 shows the com-
pletion rates of the two cohorts. More than 80% of participants
successfully completed the final code-writing exercises.

A small proportion of students were disengaged by the introduc-
tory material. This may indicate similar challenges as those encoun-
tered with the interface and the user experience in the qualitative
studies. There was a noticeable drop in the proportion of students
completing the pseudocode comment blocks Parsons problem that
presented the steps in the algorithm without any code. Figures 22
and 23 show the mean attempts and mean times needed to complete
these tasks. Examining these offers a potential explanation as there
is a noticeable increase in the time required to complete the pseu-
docode comment blocks Parsons problem, requiring an average
more than six attempts in both cohorts. This is consistent with
the qualitative observations in the think-aloud studies. Students
need to read through and parse the pseudocode comment blocks
themselves. They also needed to think through and experiment
with the sequence of operations. There was also a modest drop
in successful completion rates for the final two puzzles. Though,
those completing the first post-test code writing task tended to also
complete the second. This too is illustrated in Figures 22 and 23.
One aspect of this seems to be the cross-referencing prior mate-
rial, suggesting the scaffolding was useful. Though, in the think
aloud observations, some participants took time to recognise that
the problems they are tasked with were the same as the ones they
had just solved previously. With respect to the difference between
the first post-test write-code problem and the second, students
tended to complete the second code writing problem designed to
verify near transfer in less time than the firsts, though some of the
think-aloud observations suggest continuing obstacles with syntax.

6.2.2 class-exp. Quantitative studies were conducted at DePaul
University (N=42), Duke University (N=130), Berea College (N=14),
FalmouthUniversity (N=20), and the University ofMichigan (N=155),
with a total of 361 participants contributing to this study. The stu-
dents at University of Michigan were shown 4 questions (hereafter
referred to as class-exp-4q) as part of this study whereas all other
institutions had 5 questions (referred as class-exp-5q).

38

Figure 19: Students’ stated familiarity with variable swap and programming self-efficacy

Figure 20: Correlations between stated familiarity, self-efficacy, and attempts (Left: Ashesi, Right: Falmouth)

We used Mann-Whitney U Tests to check if the conditions (with
and without distractors) were comparable by students’ distributions

of self-efficacy and pre-knowledge: for self-efficacy, 𝑈 = 16638.5,

39

Figure 21: Drop-off rate of students not completing each problem successfully

p-value = 0.70; for pre-existing knowledge 𝑈 = 16638.5, p-value =
0.92. Therefore, the conditions are comparable.

We first compare the post test scores of the students with and
without distractors in the class-exp-5q for identifying improve-
ments in the learning performances. The difference in the aver-
ages (with distractors: 335/500, 67%; without distractors: 311/500,
62%) were not statistically significant (p-value = 0.56 shown by a
Mann-Whitney𝑈 -test). For the class-exp-4q group too, the average
post-test score differences (with distractors: 304/400, 76%; without
distractors: 276/400, 69%) were statistically not significant (p-value
= 0.45).

We had also categorized the students into two groups (high and
low) based on their self-efficacy and pre-existing knowledge levels
to further analyze performance differences. There were 153 students
in the high self-efficacy group(𝜇: 19.12, 𝜎 : 2.56) and 208 students in
the low self-efficacy group (𝜇: 11.52, 𝜎 : 3.90) while there were 155
students with high pre-existing knowledge level(𝜇: 10.81, 𝜎 : 2.95)
and 206 students with low pre-existing knowledge (𝜇: 2.67, 𝜎 : 1.91).
The self-efficacy scale used in this study was found to be internally
reliable with a Cronbach’s 𝛼 of 0.877.

In this study, we found a decline in participation in the post-
test, as shown in Tables 16 and 17. It is observed that the stu-
dents who were provided with the distractors were generally more
likely to attempt problems on the post-test, although none were
statistically significant, as shown in Table 18. Further dividing the

students based on their self-efficacy and pre-existing knowledge
of the concepts under examination, we found students with lower
self-efficacy or lesser pre-existing knowledge demonstrated a signif-
icantly higher likelihood of attempting all problems on the post-test,
particularly the write-code problems, when exposed to distractors
during practice, as shown in Table 18.

We were also interested in understanding if students would fin-
ish the post-test problems at different speeds, if shown distractors
while practicing. There was a broad trend in those shown distrac-
tors completing the problems faster. However, we did not find a
significant difference in time taken to complete the post-test, except
for with the Movie post-test problem, in which students who were
shown the distractors completed the problem a minute faster (on
an average) than those who were not shown them (shown in Table
19).

Another characteristic that we were interested in comparing was
the differences in number of syntax errors made across conditions.
Those that were shown distractors (class-exp-5q: 18 average errors,
class-exp-4q: 13 average errors) made significantly less errors in the
post-test, compared to those that were not shown distractors (class-
exp-5q: 23 average errors, class-exp-4q: 19 average errors), with a
Mann-Whitney U-test (class-exp-5q: 𝑝-value = 0.03, class-exp-4q:
𝑝-value = 0.003).

40

Figure 22: Mean number of attempts utilized by students successfully completing each task

Problem Problem Type # of Participants Attempted
Q1 Fix Code 173
Q2 Fix Code 142
Q3 Write Code 149
Q4 Write Code 139
Q5 Fix Code 118

Table 16: Number of participants attempting each question
of the posttest for all contexts combined, except University
of Michigan.

Problem Problem Type # of Participants Attempted
Q1 Fix Code 131
Q3 Write Code 116
Q4 Write Code 112
Q5 Fix Code 108

Table 17: Number of participants attempting each question
of the posttest for University of Michigan.

6.2.3 p3pt. Quantitative studies of p3pt were conducted at Ashesi
University (N=168), DePaul University (N=39), Falmouth University

(N=10), Victoria University of Wellington (n=7), and IIT Madras
(N=152), with a total of 369 participants contributing to this study.

To understand how Parsons problems or write-code practice
questions may impact students with varying CS self-efficacy levels
and pre-existing knowledge, we separated the students into groups:
those with high (N: 175, 𝜇: 18.77, 𝜎 : 2.42) and low (N: 226, 𝜇: 11.74,
𝜎 : 3.2) self-efficacy, and those with high (N: 133, 𝜇: 13.99, 𝜎 : 1.60)
and low (N: 268, 𝜇: 9.01, 𝜎 : 1.92) pre-existing knowledge. The self-
efficacy scale used in this study was found to be internally reliable
with a Cronbach’s 𝛼 of 0.870. We used Mann-Whitney U Tests to
check if the conditions (with and without distractors) were compa-
rable by students distributions of self-efficacy and pre-knowledge:
for self-efficacy,𝑈 = 17862.0, p-value = 0.72; for pre-existing knowl-
edge 𝑈 = 6384.5, p-value = 0.80. Therefore, the conditions are
comparable.

We found no significant difference in comparing students’ per-
formance in the post-test by their practice condition using a Mann-
Whitney U-test (p = 0.60). Students in the Parsons problems practice
condition scored on average 107/400, and students in the write-code
condition scored on average 111/400. We also found no significant
difference in condition of whether students attempted all or any of
the post-test problems, as shown in Table 21. However, students
with Parsons problem practice questions, on average, took signif-
icantly more attempts until getting the correct answer compared

41

Figure 23: Mean time to a correct solution at Ashesi University (in seconds)

the students with write-code practice problems, as shown in Table
22. This was also significant in students with low self-efficacy.

To answer part of our research question for this study, we com-
pared completion times for the practice questions between those
with Parsons problems, and those with write-code problems. We
found no significant difference between the average total time to
completion of students with Parsons problems (1783 seconds) to
the average total time to completion of students with write-code
problems (1600 seconds) with an independent t-test value of p=0.58.

We also investigated if students finished the post-test problems at
different speeds, if shown Parsons problems or write-code problems
while practicing a concept. There was a broad trend in those shown
write-code questions completing the problems faster. This was
found to not be significant in the post-test altogether, as well as
separately for each post-test question, excluding the first question,
as shown in Table 20.

6.2.4 jspt. For the group analyzed in this study, the self-efficacy
scale was found to be internally reliable with a Cronbach’s 𝛼 of
0.91. Consistent with the group splits initially reported by Wiggins
et al. [117], we divided the study sample (𝑁 = 31, 𝑀𝑒𝑑 = 3.5) into
two groups: those with a higher self-efficacy score than the median
(𝑁ℎ𝑖𝑔ℎ = 16) and those with a lower score (𝑁𝑙𝑜𝑤 = 15). We analyzed
two metrics: (1) the number of Parsons problems that were solved
completely and (2) the mean time to completion, for the students

who successfully completed all four problems presented in the
study.

On the one hand, Figure 25 depicts the number of completed
problems, according to the two subgroups analyzed in the study.
Given the reduced sample size and the fact that data did not satisfy
the normality assumption (verified through applying Shapiro-Wilk
tests), we opted to run non-parametric tests for the analysis; in this
case, Mann-Whitney for statistical significance and Cliff’s delta for
effect size. We did not observe a statistically significant difference in
the number of correctly completed problems (𝑈 = 161.5, 𝑝 = .086)
between students in the high self-efficacy group (𝑀𝑒𝑑 = 4) and
those in the low self-efficacy group (𝑀𝑒𝑑 = 2). We observed a
medium effect size of 𝛿 = .346.

Considering only the participants who correctly completed all
four Parsons problems, we did not observe a statistically significant
difference in the mean time to completion (𝑡 (9.3055) = 0.9938, 𝑝 =

.3455) between students who declared high self-efficacy (𝑁ℎ𝑖𝑔ℎ =

9(56.25%), 𝑀 = 437.76, 𝑆𝐷 = 158.89) and those who declared low
self-efficacy (𝑁𝑙𝑜𝑤 = 5(33.3%), 𝑀 = 519.66, 𝑆𝐷 = 141.19). There
was a medium effect size with 𝑑 = .534.

42

Figure 24: Mean time to correct solution at Falmouth University (in seconds)

0

1

2

3

4

HIGH LOW
Self Efficacy

N
um

be
r

Number of correctly completed problems

Figure 25: Number of correctly solved problems (jspt).

7 DISCUSSION
7.1 Parsons Problems Recent Directions
Since 2022, Parsons problems have continued to be investigated
most heavily in the context of learning to program and most fre-
quently at a single institution. In the past year, we have seen an
increase in the use and study of cognitive load theory with respect
to Parsons problems. Research has increased on different types

of Parsons problems, including newer variants such as adaptive
Parsons, faded Parsons, and micro Parsons. In micro Parsons prob-
lems the learner puts fragments into a single statement such as the
symbols in a regular expression or the keywords in a SQL query
[118].

As in the past, the majority of articles on Parsons problems
were published by researchers working at institutions in the USA.
The only other countries for the 2022 and 2023 publications we
found had just one or two papers. The ACM Digital Library in the
past year did not see any expansion into new countries or regions
beyond those from which there had already been Parsons problem
publications.

7.2 Addressing Considerations for MIMN
Studies

This discussion section is viewed through the lens of critical self-
reflection, as advocated by Brookfield [14]. Brookfield proposes four
lenses for critical self-reflection: autobiographical, students’ eyes,
other practitioners’ experiences, and theoretical literature. Predom-
inately, the results generated in this study are viewed through the
first autobiographical lens by the working group members. The
conducted think-aloud studies are viewed through the second lens,
that of students’ eyes which enables their voices to be heard and

43

Group/Problems wd nd 𝜒2 p-value
All Students

All Problems Attempted 0.63 0.55 2.22 0.14
All Fix Code Attempted 0.65 0.57 2.00 0.16

All Write Code Attempted 0.73 0.65 1.98 0.16
Students: low self-efficacy
All Problems Attempted 0.55 0.37 3.83 0.05
All Fix Code Attempted 0.55 0.41 2.25 0.13

All Write Code Attempted 0.68 0.46 6.15 0.013
Students: high self-efficacy
All Problems Attempted 0.70 0.68 0.0 1.0
ll Fix Code Attempted 0.72 0.69 0.075 0.78

All Write Code Attempted 0.76 0.80 0.23 0.63
Students: low pre-knowledge

All Problems Attempted 0.66 0.51 4.12 0.04
All Fix Code Attempted 0.66 0.54 2.71 0.10

All Write Code Attempted 0.77 0.62 4.49 0.03
Students: high pre-knowledge

All Problems Attempted 0.60 0.61 0.0 1.0
All Fix Code Attempted 0.63 0.61 0.004 0.95

All Write Code Attempted 0.68 0.70 0.014 0.90
Table 18: Percentage of students attempting each group of
questions, separated by whether the students were shown
distractors (wd) or not (nd), alongside a 𝜒2 test of statistical
significance and its respective p-value.

Group/Problem wd nd p-value
Total Time Taken 1002s 1127s 0.44
Q1 Time Taken 154s 143s 0.78

Q2 Tank Time Taken 200s 218s 0.61
Q3 Time Taken 232s 305s 0.016
Q4 Time Taken 158s 183s 0.41
Q5 Time Taken 192s 201s 0.65

Table 19: Time taken on each post-test question of class-exp-
5q alongside the results of an independent t-test comparing
students time taken after completing practice questions with
distractors (wd) and without distractors (nd).

Group/Problem wc pp p-value
Total Time Taken 1270s 1882s 0.068
Q1 Time Taken 292s 566s 0.017
Q2 Time Taken 307s 445s 0.16
Q3 Time Taken 229s 350s 0.15
Q4 Time Taken 435s 431s 0.98

Table 20: Time taken on each post-test question of p3pt along-
side the results of an independent t-test comparing students
time taken after completing practice questions with write-
code questions (wd) and with Parsons problems (pp).

Group/Problems wc pp 𝜒2 p-value
All Students

All Problems Attempted 0.25 0.22 0.38 0.53
Any Problem Attempted 0.47 0.51 0.55 0.45
All Fix Code Attempted 0.35 0.37 0.03 0.87

All Write Code Attempted 0.28 0.26 0.12 0.73
Students: low self-efficacy
All Problems Attempted 0.21 0.21 0.0 1.0
Any Problem Attempted 0.41 0.56 3.48 0.06
All Fix Code Attempted 0.31 0.41 1.87 0.17

All Write Code Attempted 0.23 0.27 0.15 0.69
Students: high self-efficacy
All Problems Attempted 0.29 0.23 0.71 0.40
Any Problem Attempted 0.52 0.48 0.28 0.59
All Fix Code Attempted 0.40 0.33 0.73 0.39

All Write Code Attempted 0.32 0.25 0.97 0.32
Students: low pre-knowledge

All Problems Attempted 0.30 0.26 0.38 0.53
Any Problem Attempted 0.52 0.54 0.056 0.81
All Fix Code Attempted 0.42 0.39 0.12 0.73

All Write Code Attempted 0.33 0.30 0.12 0.73
Students: high pre-knowledge

All Problems Attempted 0.16 0.14 0.02 0.89
Any Problem Attempted 0.39 0.47 0.45 0.49
All Fix Code Attempted 0.24 0.32 0.76 0.38

All Write Code Attempted 0.19 0.17 0.0047 0.95
Table 21: Percentage of students attempting each group of
questions, separated by whether the students practiced using
write-code problems (wc) or Parsons problems (pp), alongside
a 𝜒2 test of statistical significance and its respective p-value.

Group/Problems wc pp p-value
All Students

Mean Attempts to Correct 6.32 9.82 0.21
Students with low self-efficacy
Mean Attempts to Correct 3.55 8.61 0.018

Students with high self-efficacy
Mean Attempts to Correct 8.69 10.66 0.68

Students with low pre-knowledge
Mean Attempts to Correct 7.15 11.15 0.45

Students with high pre-knowledge
Mean Attempts to Correct 4.77 6.91 0.31

Table 22: Number of attempts students took until passing
all unit tests, separated by whether the students practiced
using write-code problems (wc) or Parsons problems (pp),
alongside a Mann-Whitney𝑈 -test of statistical significance
and its respective p-value.

articulated regarding their participation in this study. While the
third lens, other practitioners’ experience, indicate the work and
finding of other computing education researchers conducting re-
search in this field. The fourth lens of theoretical literature enables

44

the group to critically reflect upon what has previously occurred,
discoveries and challenges to be addressed.

Applying the autobiographical lens of critical self-reflection,
we reflect on our efforts in performing a MIMN study. Our self-
reflection is guided by previous MIMN studies sharing their rec-
ommendations and considerations for conducting these studies
(See Section 3.5). We also share our experiences to encourage more
MIMN studies in CSE and raise awareness that organizations like
ITiCSE can support future work. In this section, we divide our
discussion into three parts: Setting MIMN studies up for success
(Section 7.2.1), addressing outliers in the studies (Section 7.2.2), and
supporting MIMN studies by the community (Section 7.2.3).

7.2.1 Setting MIMN Studies up for Success. Firstly, we want to
share the guidelines that set the group up for success, starting with
Team Coordination, where team members were provided with a
digital onboarding support package to each participating researcher
at the start of our study to apply at their institution. The package
included:

• A common set of Parsons problem studies (Section 4) pre-
viously validated through a pilot program. The validated
assessment and instruments were designed to collect more
accurate data and promote higher Reliability for our study
results.

• A generic ethics (IRB) approval that researchers can use
as a template for their institution’s application process to
complete the process faster.

To address Consistent Data Collection, Cleanliness, and
Character of Data, most of the institutions used Runestone Acad-
emy to conduct the Parsons problem studies. In contrast, one insti-
tution adopted another platform due to language, which we further
discuss in Section 7.2.2. Our Parsons problems studies collected
data through Runestone Academy, so we did not have to account
for Grades across the institutions. Using the same scripts and sta-
tistical tests, the quantitative Analysis Techniques were aligned
across the institutions. For the think-alouds, the facilitators agreed
upon a protocol, meeting regularly to discuss the progress and va-
lidity. Per the ethics (IRB) approval, each institution was responsible
for their study data, following their respective Data Ownership
policy set by their institution and enabling us to share student data
anonymously.

The efforts to conduct this study were possible due to our Team
Coordination. The working group co-leaders onboarded the insti-
tutions early and hosted twoweeklymeetings to accommodate the
researchers’ timezones. The co-leaders ensured we made progress
aligned with the Project’s Goals. Reflecting on our success, we
can see the planning, organization, and communication that sup-
ported researchers in conducting the Parsons problems studies as
the various institutions.

7.2.2 Addressing Outliers in the Studies. A benefit to performing
MIMN studies is that it provides diversity in the data to help identify
global trends. However, the variety in Institutional Character-
istics also brings obstacles when applying a homogeneous study
across institutions.

Institutional Characteristics include the variety of students’
abilities across the participating institutions. We addressed stu-
dents’ abilities by providing a pretest to collect their programming
backgrounds. The pretest enabled us to calibrate the results for
Comparing Students’ Performance. In addition, to support stu-
dent participants with their understanding Parsons problems and
encourage data consistency, we provided them with videos on how
to use the assessment tool, giving them a hands-on opportunity
to practice using the assessment tool before engaging with the
treatment. However, institutional characteristics such as course
timelines and offerings were a challenge for data analysis, which
we discussed further in Section 8. Each institution also had different
ways of Selecting Participants bymaking the activity compulsory
and non-compulsory. We found that this difference had an impact
on volunteers’ behavior. For example, the volunteer participants
tend to withdraw from studies when more work is required, such
as completing the writing code treatment. This student behavior
suggests we use shorter activities to support students completing
the activity, such as the distractors vs. no distractors activities (See
Section 4.6.8) or the python swap activity (See Section4.6.6).

Another outlier was the instructional language used in the course.
One of the institutions, whose language of instruction is Spanish,
had to translate and validate the Parsons problem studies and used a
different tool that provided instructions in Spanish. The translation
process was structured as follows: (1) First, one of the co-authors
manually translated all prompts, instructions, and test items into
Spanish; (2) Next, the translated materials were individually and
independently reviewed by three bilingual English-Spanish appli-
cation domain experts, as a way to assess their understandability
and accuracy; (3) Finally, we conducted a small-scale pilot with a
sample of five domain experts—instructors and former teaching
assistants experienced in teaching the CS1 class at the University—
asking them to complete both versions of the experiment (i.e., the
original in English and the one translated into Spanish), and then
comment on the interpretability, perceived difficulty, and overall
assessment of the translation. The goal was to control as much as
possible for potential misunderstanding, ambiguity, wording issues,
and objective specification of each item.

Similarly, two institutions needed to translate the Parsons prob-
lem studies from Python to C and JavaScript (JS). We addressed the
issues and considerations in Section 4.

Another challenge was the institutions’ course offerings, where
the timing of the semesters was not aligned. With Ethics (IRB)
Approval, we encountered a similar situation as a previous ITiCSE
WG [96], where time constraints and different institutions’ ethi-
cal regulations and policies shorten the timeframe to conduct the
studies. We addressed the time constraints by some group mem-
bers previously working on related studies with existing approvals.
For North American and European institutions, the study timing
aligned with the ITiCSE WG time constraints, while institutions in
Oceania conducted their studies after the ITiCSE conference since
courses began at the end of July 2023, and some did not get ethics
approval until then.

7.2.3 Future MIMN Considerations and Recommendations. Reflect-
ing on our successes and challenges in conducting a MIMN study,
we recognize that completing one can be difficult. The results from

45

our MIMN literature review strengthen our experience that MIMN
studies can be hard to conduct, with 17 studies reported in the last
ten years. In this section, we suggest how the CSE community can
support researchers conducting these types of studies in the future.

Currently, there is support from the community to encourage
MIMN studies. The previously mentioned RIPPA paper [72] de-
scribes clear guidelines for helping teams to succeed, along with
a web presence for more visibility.3 On the website, RIPPA ex-
plains that the MIMN study has a capstone workshop, bringing
the researchers together to formalize the work and share with the
community, which is currently supported by two UK-based confer-
ences, Computing Education Practice (CEP) and United Kingdom
and Ireland Computing Education Researcher (UKICER).

Given the different institutional schedules, our semesters did
not align, so not all studies could be conducted simultaneously.
Researchers conducting MIMN studies should consider this concern
well in advance. Moreover, they should evaluate each institution’s
schedules and timelines and the courses’ schedules and coordinate
when each study can be deployed.

In this paper, we share the instruments and their descriptions
not only to inform readers but also, to motivate replication. In the
future, we would like to prepare a replication package that includes
materials from our onboarding package, analysis scripts, and study
guidelines. Setting up the studies required guidance from the co-
chairs of the working group. Thus, an alternative must be provided
to set up the interventions without the co-authors’ involvement.
The co-authors should also coordinate data ownership protocols
after the study is conducted. Even though these are specified in the
IRB and can depend on various regulations, the data collected in
MIMN studies can be used for follow-up studies.

Our MIMN literature review found cases in which an instrument
designed for a specific context is unsuitable for others [119]. Given
the nature of MIMN studies, the instruments and design choices
must be carefully reviewed to identify (and hopefully fix) potential
issues in using them across nations.

7.3 Discussion of Study Results
The 2023 ITiCSE working group conducted some small think-aloud
observational studies and several larger quantitative studies. The
think-aloud observational studies were conducted with python-
swap, class-ta, and p3dndta. The quantitative studies were conducted
with p3pt, jspt, class-exp, and python-swap.

7.3.1 Discussion of Think-Alouds. As an overall takeaway from the
think-alouds, we observed no confusion from students when they
completed the surveys and practice pages. This suggests that the
interface, and the practice with those interfaces, was effective in
teaching students how to interact with both the Parsons problems
and write-code problems. This not only contributed to the quality
of the results achieved during the think-aloud observations but also
contributes to the reliability of the quantitative results.

python-swap: Students found the practice with the Parsons prob-
lems to be effective in teaching them how to write code to swap
values between variables. It is worth noting that this finding holds
true for both of the institutions where python-swap think-alouds

3https://rippa.co.uk

were conducted. Prior research had already found that Parsons
problems are typically enjoyed by students, can serve as effective
worked examples [47], and can help students learn common pat-
terns [115].

Students who struggled with the algorithm were typically con-
fused about why they needed a temporary variable. These students
mistakenly believed that they could simply set x = y and y = x. Many
held onto that misconception even though the Parsons problem
solution used a temporary variable. One student struggled to solve
the first Parsons problem, but then used the solution to the first
Parsons problems to solve the other two. However, that student
still wrote the incorrect solution of x = y and y = x in the first post
write-code problem. It was only after that code executed that the
student realized that they had a misconception. They used the code-
lens feature to step through the code and finally realized why they
needed a temporary variable. However, they used two temporary
variables in their write-code solution since they didn’t quite recall
the Parsons problem solution.

This suggests that there are some contexts in which Parsons
problems alone may be insufficient scaffolding to dislodge certain
misconceptions and additional measures may be needed. For exam-
ple, we could let students run the code first that attempts to simply
set the value of x to y and y to x. That way they would be primed
to learn a new approach.

Finally, many students expressed difficulties when organizing
pseudocode comment blocks and preferred blocks that included
just code or code and comments. However, these difficulties come
with the caveat that it was the first of the practice Parsons problems
these students encountered. As such, it is difficult to determine how
much of the difficulty students faced is attributable to the form of
the problem or simply that it was their first time working through
the solution. Further work may be needed to determine if these
are desirable difficulties that contribute to students’ success on
code writing activities. We could try reversing the current order
of the Parsons problems. Instead of pseudocode comments first,
comments plus code, and then code only we could try code only
first, then pseudocode comments plus code, and finally pseudocode
comments only.

p3dndta and class-ta: Each of these studies compared practice
with and without distractors. These studies were analyzed using a
narrative form given the small number of participants (n=3). Stu-
dents participating in these interviews, though also expressing a
positive sentiment towards Parsons problems, had difficulty com-
pleting the code writing tasks after practice with the Parsons ac-
tivities. It is worth noting that these activities covered topics more
complex than python-swap which may somewhat explain the stu-
dents difficulties. As for the presence of distractors, students in all
interviews contended with them while solving those problems and
often included them in their solutions. However, given the small
sample size and the baseline difficulty of the topics at hand, it is not
clear from the interviews if those problems that included distrac-
tors were substantively more difficult. In one case, a student did
vocalize after selecting a distractor that they “would never forget
that [correct syntax] again” suggesting that examples of incorrect
code may be effective at teaching students to notice common errors.

46

7.3.2 Discussion of Quantitative Studies. We conducted several
studies at more than one institution.

python-swap. This study was conducted at two institutions with
a total of x participants. It tested if students could write code to swap
the values of two variables after solving several Parsons problems.
Most students (80%) could successfullywrite code to swap the values
of two variables after solving three Parsons problems - one with
only pseudocode comments that explain the steps of the algorithm,
one with the same comments and code, and one with just code. This
finding strengthens the evidence that solving Parsons problems can
help students learn to reproduce common algorithms.

However, there was a noticeable drop in the percentage of stu-
dents who completed the first Parsons problem - the one with only
pseudocode comments. Students required more attempts to solve
this problem than subsequent problems; typically, taking a mean
of six attempts. This matches the findings from the think-aloud
observations that some students find it much harder to solve a
Parsons problem with just pseudocode comments rather than code
or comments and code. This indicates that more studies should be
run to test the result from reversing this order, i.e. starting with
code only, then code with comments, and finally just comments.

The code writing exercises were typically completed in fewer
attempts and in less time than the Parsons problems. The sec-
ond write-code problem results also suggest some degree of near-
transfer, with students extending their reasoning beyond just copy-
ing the code from the previous Parsons problem.

p3pt. This studywas conducted at four institutions with a total of
369 participants. It compared solving Parsons problems to writing
the equivalent code. There was no significant difference in learning
performance by condition which replicates prior findings. However,
there was also no significant difference in practice time, which
is different from previous research that found that students can
often complete Parsons problems significantly faster than writing
the equivalent code, unless a Parsons problem solution is unusual
[25, 28]. More work needs to be done to test the learning efficiency
of solving Parsons problems versus writing the equivalent code.

class-exp. This study was conducted at five institutions with a
total of 361 participants. It compared solving Parsons problems
with distractors versus no distractors. While those in the distractor
condition had a higher average score on the posttest than those
in the no distractor condition, the difference was not statistically
significant. However, students in the Parsons problems with distrac-
tors condition had significantly less errors while writing code for
the posttest questions than those in the Parsons problem without
distractors condition. This supports the hypothesis that solving
Parsons problems with distractors can help students recognize and
avoid common errors. In addition, students with low self-efficacy
and low pre-existing knowledge were more likely to attempt the
posttest problems if they were in the condition with distractors.

jspt. Like python-swap, the qualitative and quantitative results
suggest that students found value in the Parsons Problems as they
helped them, to some extent, in completing isomorphic write-code
assignments. However, in most cases, participants did not recognize
the isomorphic relation between the problem types. A considerable
number of students faced difficulties completing the tasks, citing

lack of time and a prevalent misconception with respect to founda-
tional concepts regarding lists/arrays and abstraction. It is worth
pointing out that the participants that took part in this experiment
were very novice programmers, without a strong background in
STEM-related fields. Nevertheless, the study findings give us a first
idea of how to adapt Parsons Problems in adult education, particu-
larly when they come from diverse backgrounds.

8 LIMITATIONS
There are limitations and threats to validity to implementing a
MIMN collaborative study as an ITiCSE working group. Due to the
ITiCSEWorking Group timing constraints of accepting the working
group proposal in January and adding working group Members
through March 2023, course schedules in Oceania and South Amer-
ica institutions were not aligned with the timing to report findings
for the conference’s publication deadline. As a result, these institu-
tions had to collect and analyze data post-conference. This Working
Group would have benefited from starting the preparation earlier
to receive approvals to the IRBs in time to perform studies in their
scheduled courses.

There are likely limitations to our Parsons problems and MIMN
literature reviews. Firstly, both literature reviews used the specific
libraries to identify papers, potentially excludingworks published in
other venues. Another limitation relates to content validity for the
MIMN literature review since our search reliability depends on the
papers labeling their intention as a MIMN study. It is also possible
researchers applied other terms to describe a MIMN study or place
a priority on study’s context across countries and institutions to
feature in their paper.We cannot say our review identified all MIMN
papers; however, multiple co-authors evaluated the papers’ contents
to ensure they met the selection criteria.

9 CONCLUSION
The 2023 ITiCSE Parsons problems working group leveraged the
work of the 2022 ITiCSE Parsons problem working group, which
designed several studies in Python, created ‘study-in-a-box’ ma-
terials, and piloted two of the sets of ‘study-in-a-box’ materials.
The current timeline for ITiCSE working groups makes it difficult
to design, pilot, and also conduct research studies at various in-
stitutions and nations in the allotted time. To better match their
institutional context, some of the 2023 ITiCSE working group mem-
bers translated studies to other programming languages (JavaScript
and C) and another to a natural language (Spanish). To reduce
the typical problems with MIMN studies concerning differing user
interfaces, data collection, cleaning, and analysis, we originally
intended all the studies to be conducted on the Runestone Academy
platform. However, one of the institutions utilized a local platform
due to potential language barriers and accessibility concerns that
could have introduced unwanted biases in the data collection. We
found that it was more expedient for some of the institutions to run
think-aloud observational studies than A/B experimental studies,
which was also recommended by the MIMN literature review. Still,
some of our institutions were able to conduct quantitative studies
which provide evidence for the benefits of solving Parsons prob-
lems with distractors and for learning common algorithms. The
think-aloud observations also provided suggestions for ways to

47

improve the study materials. With our work, we hope to motivate
further work in Parsons problems MIMN studies and contribute to
previous work in MIMN research by sharing our experiences and
recommendations.

10 ACKNOWLEDGEMENTS
The 2023 ITiCSE Parsons problems working group would like to
acknowledge support from the Fulbright U.S. Scholar Program and
sabbatical support from Berea College, both of which facilitated the
cultural connections that made the IRB and data collection possible
at Ashesi University in Ghana. In addition we thank Craig Miller
of DePaul University for piloting studies and contributing data to
the class-exp study.

REFERENCES
[1] Robert K Atkinson, Sharon J Derry, Alexander Renkl, and DonaldWortham. 2000.

Learning from examples: Instructional principles from the worked examples
research. Review of educational research 70, 2 (2000), 181–214.

[2] Albert Bandura. 1997. Self-efficacy: The exercise of control. Worth Publishers,
New York, NY.

[3] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Messages Con-
sidered Unhelpful: The Landscape of Text-Based Programming Error Message
Research. In Proceedings of the Working Group Reports on Innovation and Technol-
ogy in Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE-WGR ’19).
ACM, New York, NY, USA, 177–210. https://doi.org/10.1145/3344429.3372508

[4] Sarah Beecham, John Noll, and Tony Clear. 2017. Do We Teach the Right
Thing? A Comparison of GSE Education and Practice. In 2017 IEEE 12th Interna-
tional Conference on Global Software Engineering (ICGSE). IEEE, Buenos Aires,
Argentina, 11–20. https://doi.org/10.1109/ICGSE.2017.8

[5] Klara Benda, Amy Bruckman, and Mark Guzdial. 2012. When life and learning
do not fit: Challenges of workload and communication in introductory computer
science online. ACM Transactions on Computing Education (TOCE) 12, 4 (2012),
1–38.

[6] Jeff Bender, Bingpu Zhao, Alex Dziena, and Gail Kaiser. 2022. Learning Compu-
tational Thinking Efficiently How Parsons Programming Puzzles within Scratch
Might Help. In Proceedings of the Twenty-Fourth Australasian Computing Educa-
tion Conference. ACM, Online, 66–75.

[7] Sylvia Beyer, Kristina Rynes, Julie Perrault, Kelly Hay, and Susan Haller. 2003.
Gender differences in computer science students. In Proceedings of the 34th
SIGCSE technical symposium on Computer science education. ACM, Reno, NV,
USA, 49–53.

[8] Elizabeth Ligon Bjork, Jeri L Little, and Benjamin C Storm. 2014. Multiple-choice
testing as a desirable difficulty in the classroom. Journal of Applied Research in
Memory and Cognition 3, 3 (2014), 165–170.

[9] Robert A Bjork. 2017. Creating desirable difficulties to enhance learning. In Best
of the Best: Progress (Best of the Best series). CrownHouse Publishing, Carmarthen,
UK.

[10] A. Booth, A. Sutton, and D. Papaioannou. 2016. Systematic Approaches to a
Successful Literature Review. Sage, London. https://eprints.whiterose.ac.uk/
105755/ © 2016 Andrew Booth, Anthea Sutton and Diana Papaioannou.

[11] Dennis Bouvier, Ellie Lovellette, John Matta, Bedour Alshaigy, Brett A. Becker,
Michelle Craig, Jana Jackova, Robert McCartney, Kate Sanders, and Mark Zarb.
2016. Novice Programmers and the Problem Description Effect. In Proceedings of
the 2016 ITiCSEWorking Group Reports (Arequipa, Peru) (ITiCSE ’16). Association
for Computing Machinery, New York, NY, USA, 103–118. https://doi.org/10.
1145/3024906.3024912

[12] John D Bransford, Ann L Brown, and Rodney R Cocking. 2000. How people learn.
Vol. 11. National academy press, Washington DC, USA.

[13] Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner, and Mo-
hamed Khalil. 2007. Lessons from applying the systematic literature review
process within the software engineering domain. Journal of Systems and Soft-
ware 80, 4 (2007), 571–583. https://doi.org/10.1016/j.jss.2006.07.009 Software
Performance.

[14] Stephen D Brookfield. 2017. Becoming a critically reflective teacher (2 ed.).
Jossey-Bass, London, England.

[15] Peter Brusilovsky, Barbara J Ericson, Cay S Horstmann, Christian Servin, Frank
Vahid, and Craig Zilles. 2023. The Future of Computing Education Materials.
Technical Report. ACM.

[16] Aparna Chirumamilla and Guttorm Sindre. 2019. E-Assessment in Programming
Courses: Towards a Digital Ecosystem Supporting Diverse Needs?. In Digital

Transformation for a Sustainable Society in the 21st Century: 18th IFIP WG 6.11
Conference on e-Business, e-Services, and e-Society, I3E 2019, Trondheim, Norway,
September 18–20, 2019, Proceedings 18. Springer, Trondheim, Norway, 585–596.

[17] Holger Danielsiek, Laura Toma, and Jan Vahrenhold. 2017. An Instrument to
Assess Self-Efficacy in Introductory Algorithms Courses. In Proceedings of the
2017 ACM Conference on International Computing Education Research (Tacoma,
Washington, USA) (ICER ’17). Association for Computing Machinery, New York,
NY, USA, 217–225. https://doi.org/10.1145/3105726.3106171

[18] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2008. Evaluating a
New Exam Question: Parsons Problems. In Proceedings of the Fourth Interna-
tional Workshop on Computing Education Research (Sydney, Australia) (ICER
’08). Association for Computing Machinery, New York, NY, USA, 113–124.
https://doi.org/10.1145/1404520.1404532

[19] Paul Denny, James Prather, Brett A Becker, Zachary Albrecht, Dastyni Loksa, and
Raymond Pettit. 2019. A Closer Look at Metacognitive Scaffolding: Solving Test
Cases Before Programming. In Proceedings of the 19th Koli Calling International
Conference on Computing Education Research. ACM, New York, NY, USA, 1–10.

[20] Yuemeng Du, Andrew Luxton-Reilly, and Paul Denny. 2020. A Review of Re-
search on Parsons Problems. In Proceedings of the Twenty-Second Australasian
Computing Education Conference (Melbourne, VIC, Australia) (ACE’20). As-
sociation for Computing Machinery, New York, NY, USA, 195–202. https:
//doi.org/10.1145/3373165.3373187

[21] Rodrigo Duran, Jan-Mikael Rybicki, Juha Sorva, and Arto Hellas. 2019. Exploring
the Value of Student Self-Evaluation in Introductory Programming. In Proceed-
ings of the 2019 ACM Conference on International Computing Education Research
(Toronto ON, Canada) (ICER ’19). Association for Computing Machinery, New
York, NY, USA, 121–130. https://doi.org/10.1145/3291279.3339407

[22] Carol S Dweck. 1986. Motivational processes affecting learning. American
psychologist 41, 10 (1986), 1040.

[23] Jacquelynne Eccles. 2009. Who am I and what am I going to do with my
life? Personal and collective identities as motivators of action. Educational
psychologist 44, 2 (2009), 78–89.

[24] Elsa Eiriksdottir and Richard Catrambone. 2011. Procedural instructions, prin-
ciples, and examples: How to structure instructions for procedural tasks to
enhance performance, learning, and transfer. Human factors 53, 6 (2011), 749–
770.

[25] Barbara Ericson and Carl Haynes-Magyar. 2022. Adaptive Parsons Problems
as Active Learning Activities During Lecture. In Proceedings of the 27th ACM
Conference on on Innovation and Technology in Computer Science Education Vol.
1 (Dublin, Ireland) (ITiCSE ’22). Association for Computing Machinery, New
York, NY, USA, 290–296. https://doi.org/10.1145/3502718.3524808

[26] Barbara Ericson, Austin McCall, and Kathryn Cunningham. 2019. Investigating
the affect and effect of adaptive parsons problems. In Proceedings of the 19th
Koli Calling International Conference on Computing Education Research. ACM,
New York, NY, USA, 1–10.

[27] Barbara J. Ericson, Paul Denny, James Prather, Rodrigo Duran, Arto Hellas, Juho
Leinonen, Craig S. Miller, Briana B. Morrison, Janice L. Pearce, and Susan H.
Rodger. 2022. Parsons Problems and Beyond: Systematic Literature Review
and Empirical Study Designs. In Proceedings of the 2022 Working Group Reports
on Innovation and Technology in Computer Science Education (Dublin, Ireland)
(ITiCSE-WGR ’22). Association for Computing Machinery, New York, NY, USA,
191–234. https://doi.org/10.1145/3571785.3574127

[28] Barbara J Ericson, James D Foley, and Jochen Rick. 2018. Evaluating the efficiency
and effectiveness of adaptive parsons problems. In Proceedings of the 2018 ACM
Conference on International Computing Education Research. ACM, New York, NY,
USA, 60–68.

[29] Barbara J. Ericson, Mark J. Guzdial, and Briana B. Morrison. 2015. Analysis of In-
teractive Features Designed to Enhance Learning in an Ebook. In Proceedings of
the Eleventh Annual International Conference on International Computing Educa-
tion Research (Omaha, Nebraska, USA) (ICER ’15). Association for ComputingMa-
chinery, New York, NY, USA, 169–178. https://doi.org/10.1145/2787622.2787731

[30] Barbara J Ericson, Lauren E Margulieux, and Jochen Rick. 2017. Solving parsons
problems versus fixing and writing code. In Koli Calling ’17: Proceedings of the
17th Koli Calling International Conference on Computing Education Research.
ACM, New York, NY, USA, 1–10.

[31] Barbara J Ericson and Bradley NMiller. 2020. Runestone: A Platform for Free, On-
line, and Interactive Ebooks. In Proceedings of the 51st ACM Technical Symposium
on Computer Science Education. ACM, New York, NY, USA, 1012–1018.

[32] K Anders Ericsson, Ralf T Krampe, and Clemens Tesch-Römer. 1993. The role
of deliberate practice in the acquisition of expert performance. Psychological
review 100, 3 (1993), 363.

[33] José Figueiredo and Francisco José García-Peñalvo. 2022. Strategies to increase
success in learning programming. In 2022 International Symposium on Computers
in Education (SIIE). IEEE, New York, NY, 1–6.

[34] Sally Fincher, Raymond Lister, Tony Clear, Anthony Robins, Josh Tenenberg,
and Marian Petre. 2005. Multi-Institutional, Multi-National Studies in CSEd
Research: Some Design Considerations and Trade-Offs. In Proceedings of the
First International Workshop on Computing Education Research (Seattle, WA,

48

https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1109/ICGSE.2017.8
https://eprints.whiterose.ac.uk/105755/
https://eprints.whiterose.ac.uk/105755/
https://doi.org/10.1145/3024906.3024912
https://doi.org/10.1145/3024906.3024912
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1145/3105726.3106171
https://doi.org/10.1145/1404520.1404532
https://doi.org/10.1145/3373165.3373187
https://doi.org/10.1145/3373165.3373187
https://doi.org/10.1145/3291279.3339407
https://doi.org/10.1145/3502718.3524808
https://doi.org/10.1145/3571785.3574127
https://doi.org/10.1145/2787622.2787731

USA) (ICER ’05). Association for Computing Machinery, New York, NY, USA,
111–121. https://doi.org/10.1145/1089786.1089797

[35] Flynn Fromont, Hiruna Jayamanne, and Paul Denny. 2023. Exploring the Diffi-
culty of Faded Parsons Problems for Programming Education. In Proceedings of
the 25th Australasian Computing Education Conference. Association for Comput-
ing Machinery, New York, NY, USA, 113–122.

[36] Rita Garcia. 2021. Evaluating Parsons Problems as a Design-Based Intervention.
In 2021 IEEE Frontiers in Education Conference (FIE). IEEE, IEEE, New York, NY,
1–9.

[37] Rita Garcia, Katrina Falkner, and Rebecca Vivian. 2018. Scaffolding the Design
Process Using Parsons Problems. In Proceedings of the 18th Koli Calling Interna-
tional Conference on Computing Education Research (Koli, Finland) (Koli Calling
’18). Association for Computing Machinery, New York, NY, USA, Article 26,
2 pages. https://doi.org/10.1145/3279720.3279746

[38] Fernand Gobet and Herbert A Simon. 1996. Recall of random and distorted
chess positions: Implications for the theory of expertise. Memory & cognition
24, 4 (1996), 493–503.

[39] Scott Grissom, Renée Mccauley, and Laurie Murphy. 2017. How Student
Centered is the Computer Science Classroom? A Survey of College Faculty.
ACM Trans. Comput. Educ. 18, 1, Article 5 (nov 2017), 27 pages. https:
//doi.org/10.1145/3143200

[40] Shuchi Grover, Brian Broll, and Derek Babb. 2023. Cybersecurity Education in
the Age of AI: Integrating AI Learning into Cybersecurity High School Curricula.
In Proceedings of the fifty-fourth ACM Technical Symposium on Computer Science
Education V. 1 (SIGCSE 2023),. ACM, New York, NY, 980–986.

[41] Kyle James Harms, Jason Chen, and Caitlin L. Kelleher. 2016. Distractors in
Parsons Problems Decrease Learning Efficiency for Young Novice Programmers.
In Proceedings of the 2016 ACM Conference on International Computing Education
Research (Melbourne, VIC, Australia) (ICER ’16). Association for Computing
Machinery, New York, NY, USA, 241–250. https://doi.org/10.1145/2960310.
2960314

[42] Devamardeep Hayatpur, Tehilla Helfenbaum, Haijun Xia, Wolfgang Stuerzlinger,
and Paul Gries. 2023. Structuring Collaboration in Programming Through
Personal-Spaces. In Extended Abstracts of the 2023 CHI Conference on Human
Factors in Computing Systems (Hamburg, Germany) (CHI EA ’23). Association
for Computing Machinery, New York, NY, USA, Article 263, 7 pages.

[43] Carl Haynes-Magyar and Barbara Ericson. 2022. The Impact of Solving Adaptive
Parsons Problems with Common and Uncommon Solutions. In Proceedings of
the 22nd Koli Calling International Conference on Computing Education Research
(Koli, Finland) (Koli Calling ’22). Association for Computing Machinery, New
York, NY, USA, Article 23, 14 pages. https://doi.org/10.1145/3564721.3564736

[44] Juha Helminen, Petri Ihantola, Ville Karavirta, and Lauri Malmi. 2012. How
do students solve parsons programming problems? an analysis of interaction
traces. In Proceedings of the ninth annual international conference on International
computing education research. Association for Computing Machinery, New York,
NY, USA, 119–126.

[45] Roya Hosseini, Kamil Akhuseyinoglu, Peter Brusilovsky, Lauri Malmi, Kerttu
Pollari-Malmi, Christian Schunn, and Teemu Sirkia. 2020. Improving Engage-
ment in Program Construction Examples for Learning Python Programming.
International Journal of Artificial Intelligence in Education 30 (2020), 299–336.

[46] Roya Hosseini, Kamil Akhuseyinoglu, Andrew Petersen, Christian D Schunn,
and Peter Brusilovsky. 2018. PCEX: interactive program construction examples
for learning programming. In Proceedings of the 18th Koli Calling International
Conference on Computing Education Research. Association for Computing Ma-
chinery, New York, NY, USA, 1–9.

[47] Xinying Hou, Barbara Jane Ericson, and XuWang. 2022. Using Adaptive Parsons
Problems to Scaffold Write-Code Problems. In Proceedings of the 2022 ACM
Conference on International Computing Education Research V. 1. Association for
Computing Machinery, New York, NY, USA, 15–26.

[48] Xinying Hou, Barbara Jane Ericson, and Xu Wang. 2023. Parsons Problems to
Scaffold Code Writing: Impact on Performance and Problem-Solving Efficiency.
In Proceedings of the 2023 Conference on Innovation and Technology in Computer
Science Education V. 2. ACM, New York, NY, 665–665.

[49] Slava Kalyuga, Paul Ayres, Paul Chandler, and John Sweller. 2003. The Expertise
Reversal Effect. Educational Psychologist 38, 1 (2003), 23–31. https://doi.org/10.
1207/S15326985EP3801_4

[50] Sandra Katz, David Allbritton, John Aronis, Christine Wilson, and Mary Lou
Soffa. 2006. Gender, achievement, and persistence in an undergraduate com-
puter science program. ACM SIGMIS Database: the DATABASE for Advances in
Information Systems 37, 4 (2006), 42–57.

[51] United Kingdom and Ireland Computing Education Research (UKICER) Confer-
ence. 2023. UKICER 2023: Call for Participation. UK ACM SIGCSE. Retrieved
July 8, 2023 from https://www.ukicer.com/participation.html

[52] Paivi Kinnunen and Beth Simon. 2010. Experiencing programming assignments
in CS1: the emotional toll. In Proceedings of the Sixth international workshop
on Computing education research. Association for Computing Machinery, New
York, NY, USA, 77–86.

[53] Päivi Kinnunen and Beth Simon. 2011. CS majors’ self-efficacy perceptions in
CS1: results in light of social cognitive theory. In Proceedings of the seventh inter-
national workshop on Computing education research. Association for Computing
Machinery, New York, NY, USA, 19–26.

[54] Jo-Anne LeFevre and Peter Dixon. 1986. Do written instructions need examples?
Cognition and Instruction 3, 1 (1986), 1–30.

[55] Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders, Otto
Seppälä, Beth Simon, and Lynda Thomas. 2004. A Multi-National Study of
Reading and Tracing Skills in Novice Programmers. In Working Group Reports
from ITiCSE on Innovation and Technology in Computer Science Education (Leeds,
United Kingdom) (ITiCSE-WGR ’04). Association for Computing Machinery,
New York, NY, USA, 119–150. https://doi.org/10.1145/1044550.1041673

[56] Nelson Lojo and Armando Fox. 2022. Teaching Test-Writing as a Variably-
Scaffolded Programming Pattern. In Proceedings of the 27th ACM Conference on
on Innovation and Technology in Computer Science Education Vol. 1. ACM, New
York, NY, 498–504.

[57] Dastyni Loksa, Lauren Margulieux, Brett A. Becker, Michelle Craig, Paul Denny,
Raymond Pettit, and James Prather. 2022. Metacognition and Self-Regulation in
Programming Education: Theories and Exemplars of Use. ACM Trans. Comput.
Educ. 22, 4 (dec 2022), 1–31. https://doi.org/10.1145/3487050

[58] Andrew Luxton-Reilly and Andrew Petersen. 2017. The Compound Nature of
Novice Programming Assessments. In Proceedings of the Nineteenth Australasian
Computing Education Conference (Geelong, VIC, Australia) (ACE ’17). Association
for Computing Machinery, New York, NY, USA, 26–35. https://doi.org/10.1145/
3013499.3013500

[59] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Gian-
nakos, Amruth N. Kumar, Linda Ott, James Paterson, Michael James Scott, Judy
Sheard, and Claudia Szabo. 2018. Introductory Programming: A Systematic
Literature Review. In Proceedings Companion of the 23rd Annual ACM Conference
on Innovation and Technology in Computer Science Education (Larnaca, Cyprus)
(ITiCSE 2018 Companion). Association for Computing Machinery, New York,
NY, USA, 55–106. https://doi.org/10.1145/3293881.3295779

[60] Jane Margolis. 2017. Stuck in the Shallow End, updated edition: Education, Race,
and Computing. MIT press, Cambridge, Massachusetts.

[61] Jane Margolis and Allan Fisher. 2002. Unlocking the clubhouse: Women in com-
puting. MIT press, Cambridge, Massachusetts.

[62] Catherine Marshall and Gretchen B. Rossman. 1999. Designing Qualitative
Research (3rd ed.). Sage Publications, London.

[63] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan,
Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz
Wilusz. 2001. A Multi-National, Multi-Institutional Study of Assessment of
Programming Skills of First-Year CS Students. SIGCSE Bull. 33, 4 (dec 2001),
125–180. https://doi.org/10.1145/572139.572181

[64] Brad Miller and David Ranum. 2014. Runestone Interactive: Tools for Creating
Interactive Course Materials. In Proceedings of the First ACM Conference on
Learning @ Scale Conference (Atlanta, Georgia, USA) (L@S ’14). Association for
Computing Machinery, New York, NY, USA, 213–214. https://doi.org/10.1145/
2556325.2567887

[65] George A Miller. 1956. The magical number seven, plus or minus two: Some
limits on our capacity for processing information. Psychological review 63, 2
(1956), 81.

[66] Briana B. Morrison, Lauren E. Margulieux, Barbara Ericson, and Mark Guzdial.
2016. Subgoals Help Students Solve Parsons Problems. In Proceedings of the
47th ACM Technical Symposium on Computing Science Education. Association
for Computing Machinery, New York, NY, USA, 42–47.

[67] Kasia Muldner, Jay Jennings, and Veronica Chiarelli. 2022. A Review of Worked
Examples in Programming Activities. ACMTransactions on Computing Education
23, 1 (2022), 1–35.

[68] Fred Paas, Alexander Renkl, and John Sweller. 2003. Cognitive load theory and
instructional design: Recent developments. Educational psychologist 38, 1 (2003),
1–4.

[69] Fred Paas, Tamara Van Gog, and John Sweller. 2010. Cognitive load theory:
New conceptualizations, specifications, and integrated research perspectives.
Educational psychology review 22, 2 (2010), 115–121.

[70] Jennifer Parham-Mocello, Martin Erwig, Margaret Niess, Jason Weber, Madelyn
Smith, and Garrett Berliner. 2023. Putting Computing on the Table: Using
Physical Games to Teach Computer Science. In Proceedings of the 54th ACM
Technical Symposium on Computer Science Education V. 1. ACM, New York, NY,
444–450.

[71] Miranda C. Parker, Mark Guzdial, and Shelly Engleman. 2016. Replication,
Validation, and Use of a Language Independent CS1 Knowledge Assessment. In
Proceedings of the 2016 ACM Conference on International Computing Education
Research (Melbourne, VIC, Australia) (ICER ’16). Association for Computing Ma-
chinery, New York, NY, USA, 93–101. https://doi.org/10.1145/2960310.2960316

[72] Jack Parkinson, Sebastian Dziallas, Gary Lewandowski, Fiona Mcneill, Jim
Williams, andQuintin Cutts. 2022. Experience Report: Running and Participating
in a Multi-Institutional Research in Practice Project Activity (RIPPA). In Proceed-
ings of the 2022 Conference on United Kingdom & Ireland Computing Education

49

https://doi.org/10.1145/1089786.1089797
https://doi.org/10.1145/3279720.3279746
https://doi.org/10.1145/3143200
https://doi.org/10.1145/3143200
https://doi.org/10.1145/2960310.2960314
https://doi.org/10.1145/2960310.2960314
https://doi.org/10.1145/3564721.3564736
https://doi.org/10.1207/S15326985EP3801_4
https://doi.org/10.1207/S15326985EP3801_4
https://www.ukicer.com/participation.html
https://doi.org/10.1145/1044550.1041673
https://doi.org/10.1145/3487050
https://doi.org/10.1145/3013499.3013500
https://doi.org/10.1145/3013499.3013500
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/572139.572181
https://doi.org/10.1145/2556325.2567887
https://doi.org/10.1145/2556325.2567887
https://doi.org/10.1145/2960310.2960316

Research (Dublin, Ireland) (UKICER ’22). Association for Computing Machinery,
New York, NY, USA, Article 4, 7 pages. https://doi.org/10.1145/3555009.3555014

[73] Dale Parsons and Patricia Haden. 2006. Parson’s Programming Puzzles: A Fun
and Effective Learning Tool for First Programming Courses. In Proceedings of
the 8th Australasian Conference on Computing Education - Volume 52 (Hobart,
Australia) (ACE ’06). Australian Computer Society, Inc., AUS, 157–163.

[74] Dale Parsons, Krissi Wood, and Patricia Haden. 2015. What are we doing when
we assess programming. In Proceedings of the 17th Australasian Computing
Education Conference (ACE 2015), Vol. 27. Australian Computer Society, Inc.,
AUS, 30.

[75] Yulia Pechorina, Keith Anderson, and Paul Denny. 2023. Metacodenition: Scaf-
folding the Problem-Solving Process for Novice Programmers. In Proceedings of
the 25th Australasian Computing Education Conference. Association for Comput-
ing Machinery, New York, NY, USA, 59–68.

[76] Peter L Pirolli and John R Anderson. 1985. The role of learning from exam-
ples in the acquisition of recursive programming skills. Canadian Journal of
Psychology/Revue canadienne de psychologie 39, 2 (1985), 240.

[77] Leo Porter, Dennis Bouvier, Quintin Cutts, Scott Grissom, Cynthia Lee, Robert
McCartney, Daniel Zingaro, and Beth Simon. 2016. A Multi-Institutional Study
of Peer Instruction in Introductory Computing. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education (Memphis, Tennessee,
USA) (SIGCSE ’16). Association for Computing Machinery, New York, NY, USA,
358–363. https://doi.org/10.1145/2839509.2844642

[78] James Prather, Brett A Becker, Michelle Craig, Paul Denny, Dastyni Loksa,
and Lauren Margulieux. 2020. What do we think we think we are doing?
Metacognition and self-regulation in programming. In Proceedings of the 2020
ACM Conference on International Computing Education Research. Association
for Computing Machinery, New York, NY, USA, 2–13.

[79] James Prather, John Homer, Paul Denny, Brett Becker, JohnMarsden, and Garrett
Powell. 2022. Scaffolding Task Planning Using Abstract Parsons Problems. In
Proceedings of the 2022 World Conference on Computers in Education (WCCE ’22).
IFIP, Japan, 1–10.

[80] James Prather, Lauren Margulieux, Jacqueline Whalley, Paul Denny, Brent N
Reeves, Brett A Becker, Paramvir Singh, Garrett Powell, and Nigel Bosch. 2022.
Getting By With Help From My Friends: Group Study in Introductory Program-
ming Understood as Socially Shared Regulation. In Proceedings of the 2022 ACM
Conference on International Computing Education Research-Volume 1. Association
for Computing Machinery, New York, NY, USA, 164–176.

[81] James Prather, Raymond Pettit, Brett A Becker, Paul Denny, Dastyni Loksa, Alani
Peters, Zachary Albrecht, and Krista Masci. 2019. First things first: Providing
metacognitive scaffolding for interpreting problem prompts. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education. Association
for Computing Machinery, New York, NY, USA, 531–537.

[82] James Prather, Raymond Pettit, Kayla McMurry, Alani Peters, John Homer, and
Maxine Cohen. 2018. Metacognitive difficulties faced by novice programmers
in automated assessment tools. In Proceedings of the 2018 ACM Conference
on International Computing Education Research. Association for Computing
Machinery, New York, NY, USA, 41–50.

[83] James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani Peters, John
Homer, Nevan Simone, and Maxine Cohen. 2017. On novices’ interaction with
compiler error messages: A human factors approach. In Proceedings of the 2017
ACM Conference on International Computing Education Research. Association
for Computing Machinery, New York, NY, USA, 74–82.

[84] Integrating Parsons puzzles within Scratch enables efficient computational think-
ing learning. 2023. Integrating Parsons puzzles within Scratch enables efficient
computational thinking learning. Integrating Parsons puzzles within Scratch
enables efficient computational thinking learning 18, 22 (2023), 25.

[85] Yizhou Qian and James Lehman. 2017. Students’ misconceptions and other
difficulties in introductory programming: A literature review. ACM Transactions
on Computing Education (TOCE) 18, 1 (2017), 1–24.

[86] Keith Quille and Susan Bergin. 2018. Programming: Predicting Student Success
Early in CS1. a Re-Validation and Replication Study. In Proceedings of the 23rd
Annual ACM Conference on Innovation and Technology in Computer Science Edu-
cation (Larnaca, Cyprus) (ITiCSE 2018). Association for Computing Machinery,
New York, NY, USA, 15–20. https://doi.org/10.1145/3197091.3197101

[87] Keith Quille, Natalie Culligan, and Susan Bergin. 2017. Insights on Gender
Differences in CS1: A Multi-Institutional, Multi-Variate Study.. In Proceedings
of the 2017 ACM Conference on Innovation and Technology in Computer Science
Education (Bologna, Italy) (ITiCSE ’17). Association for Computing Machinery,
New York, NY, USA, 263–268. https://doi.org/10.1145/3059009.3059048

[88] Keith Quille, Soohyun Nam Liao, Eileen Costelloe, Keith Nolan, Aidan Mooney,
and Kartik Shah. 2022. PreSS: Predicting Student Success Early in CS1. A Pilot
International Replication and Generalization Study. In Proceedings of the 27th
ACM Conference on on Innovation and Technology in Computer Science Education
Vol. 1 (Dublin, Ireland) (ITiCSE ’22). Association for Computing Machinery, New
York, NY, USA, 54–60. https://doi.org/10.1145/3502718.3524755

[89] Brent Reeves, Sami Sarsa, James Prather, Paul Denny, Brett A. Becker, Arto
Hellas, Bailey Kimmel, Garrett Powell, and Juho Leinonen. 2023. Evaluating the

Performance of Code Generation Models for Solving Parsons Problems With
Small Prompt Variations. In Proceedings of the 2023 Conference on Innovation
and Technology in Computer Science Education V. 1. Association for Computing
Machinery, New York, NY, USA, 299–305.

[90] Alexander Renkl. 2005. The worked-out-example principle in multimedia learn-
ing. The Cambridge handbook of multimedia learning 1 (2005), 229–245.

[91] Emma Riese, Madeleine Lorås, Martin Ukrop, and Tomáš Effenberger. 2021. Chal-
lenges Faced by Teaching Assistants in Computer Science Education Across
Europe. In Proceedings of the 26th ACM Conference on Innovation and Tech-
nology in Computer Science Education V. 1 (Virtual Event, Germany) (ITiCSE
’21). Association for Computing Machinery, New York, NY, USA, 547–553.
https://doi.org/10.1145/3430665.3456304

[92] Judy Sheard, Simon, Julian Dermoudy, Daryl D’Souza, Minjie Hu, and Dale
Parsons. 2014. Benchmarking a Set of Exam Questions for Introductory Pro-
gramming. In Proceedings of the Sixteenth Australasian Computing Education
Conference - Volume 148 (Auckland, New Zealand) (ACE ’14). Australian Com-
puter Society, Inc., AUS, 113–121.

[93] Yu Sheng, Bin Li, Zequan Wu, Ping Zhong, and Guihua Duan. 2022. AC Lan-
guage Learning Platform Based on Parsons Problems. In International Conference
on Computer Science and Education. Springer, Association for Computing Ma-
chinery, New York, NY, USA, 541–552.

[94] Dermot Shinners-Kennedy and Sally A. Fincher. 2013. Identifying Threshold
Concepts: From Dead End to a New Direction. In Proceedings of the Ninth
Annual International ACM Conference on International Computing Education
Research (San Diego, San California, USA) (ICER ’13). Association for Computing
Machinery, New York, NY, USA, 9–18. https://doi.org/10.1145/2493394.2493396

[95] Angela A. Siegel, Mark Zarb, Bedour Alshaigy, Jeremiah Blanchard, Tom Crick,
Richard Glassey, John R. Hott, Celine Latulipe, Charles Riedesel, Mali Senap-
athi, Simon, and David Williams. 2022. Teaching through a Global Pandemic:
Educational Landscapes Before, During and After COVID-19. In Proceedings
of the 2021 Working Group Reports on Innovation and Technology in Computer
Science Education (Virtual Event, Germany) (ITiCSE-WGR ’21). Association for
Computing Machinery, New York, NY, USA, 1–25.

[96] Angela A. Siegel, Mark Zarb, Emma Anderson, Brent Crane, Alice Gao, Celine
Latulipe, Ellie Lovellette, Fiona McNeill, and Debbie Meharg. 2022. The Impact
of COVID-19 on the CS Student Learning Experience: How the Pandemic Has
Shaped the Educational Landscape. In Proceedings of the 2022 Working Group
Reports on Innovation and Technology in Computer Science Education (Dublin,
Ireland) (ITiCSE-WGR ’22). Association for Computing Machinery, New York,
NY, USA, 165–190. https://doi.org/10.1145/3571785.3574126

[97] Teemu Sirkiä. 2016. Combining Parson’s problems with program visualization
in CS1 context. In Proceedings of the 16th Koli Calling International Conference
on Computing Education Research. Association for Computing Machinery, New
York, NY, USA, 155–159.

[98] John A Sloboda, Jane W Davidson, Michael JA Howe, and Derek G Moore. 1996.
The role of practice in the development of performing musicians. British journal
of psychology 87, 2 (1996), 287–309.

[99] David Smith and Craig Zilles. 2023. Discovering, Autogenerating, and Evaluating
Distractors for Python Parsons Problems in CS1. In Proceedings of the 54th ACM
Technical Symposium on Computer Science Education V. 1 (SIGCSE 2023). ACM,
New York, NY, 924–930.

[100] David H. Smith, Max Fowler, and Craig Zilles. 2023. Investigating the Role and
Impact of Distractors on Parsons Problems in CS1 Assessments. In Proceedings of
the 2023 Conference on Innovation and Technology in Computer Science Education
V. 1. Association for Computing Machinery, New York, NY, USA, 417–423.

[101] Sylvia Stuurman, Harrie Passier, and Erik Barendsen. 2016. Analyzing Students’
Software Redesign Strategies. In Proceedings of the 16th Koli Calling International
Conference on Computing Education Research (Koli, Finland) (Koli Calling ’16).
Association for Computing Machinery, New York, NY, USA, 110–119. https:
//doi.org/10.1145/2999541.2999559

[102] Lovisa Sundin, Nourhan Sakr, Juho Leinonen, Sherif Aly, and Quintin Cutts.
2021. Visual Recipes for Slicing and Dicing Data: Teaching Data Wrangling
Using Subgoal Graphics. In Proceedings of the 21st Koli Calling International
Conference on Computing Education Research (Joensuu, Finland) (Koli Calling
’21). Association for Computing Machinery, New York, NY, USA, Article 29,
10 pages. https://doi.org/10.1145/3488042.3488063

[103] John Sweller. 1988. Cognitive load during problem solving: Effects on learning.
Cognitive science 12, 2 (1988), 257–285.

[104] John Sweller. 2006. The worked example effect and human cognition. Learning
and instruction 16, 2 (2006), 165–169.

[105] John Sweller, Jeroen JG van Merriënboer, and Fred Paas. 2019. Cognitive archi-
tecture and instructional design: 20 years later. Educational Psychology Review
31 (2019), 261–292.

[106] Kok Cheng Tan, Daniel Zantedeschi, Amruth Kumar, and Alessio Gaspar. 2022.
Genetic algorithm cleaning in sequential data mining: analyzing solutions to
parsons’ puzzles. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion. Association for Computing Machinery, New York, NY,
USA, 2330–2333.

50

https://doi.org/10.1145/3555009.3555014
https://doi.org/10.1145/2839509.2844642
https://doi.org/10.1145/3197091.3197101
https://doi.org/10.1145/3059009.3059048
https://doi.org/10.1145/3502718.3524755
https://doi.org/10.1145/3430665.3456304
https://doi.org/10.1145/2493394.2493396
https://doi.org/10.1145/3571785.3574126
https://doi.org/10.1145/2999541.2999559
https://doi.org/10.1145/2999541.2999559
https://doi.org/10.1145/3488042.3488063

[107] Dirk Tempelaar, Bart Rienties, and Quan Nguyen. 2018. Investigating Learning
Strategies in a Dispositional Learning Analytics Context: The Case of Worked
Examples. In Proceedings of the 8th International Conference on Learning Analytics
and Knowledge (Sydney, New South Wales, Australia) (LAK ’18). Association for
Computing Machinery, New York, NY, USA, 201–205. https://doi.org/10.1145/
3170358.3170385

[108] John Gregory Trafton and Brian J Reiser. 1994. The contributions of studying
examples and solving problems to skill acquisition. Ph. D. Dissertation. Citeseer.

[109] Ian Utting, Allison Elliott Tew, Mike McCracken, Lynda Thomas, Dennis Bou-
vier, Roger Frye, James Paterson, Michael Caspersen, Yifat Ben-David Kolikant,
Juha Sorva, and Tadeusz Wilusz. 2013. A Fresh Look at Novice Programmers’
Performance and Their Teachers’ Expectations. In Proceedings of the ITiCSE
Working Group Reports Conference on Innovation and Technology in Computer
Science Education-Working Group Reports (Canterbury, England, United King-
dom) (ITiCSE -WGR ’13). Association for Computing Machinery, New York, NY,
USA, 15–32. https://doi.org/10.1145/2543882.2543884

[110] Jeroen JG Van Merriënboer and Marcel BM De Croock. 1992. Strategies for
computer-based programming instruction: Program completion vs. program
generation. Journal of Educational Computing Research 8, 3 (1992), 365–394.

[111] Valdemar Švábenský, Richard Weiss, Jack Cook, Jan Vykopal, Pavel Čeleda,
Jens Mache, Radoslav Chudovský, and Ankur Chattopadhyay. 2022. Evaluating
Two Approaches to Assessing Student Progress in Cybersecurity Exercises. In
Proceedings of the 53rd ACM Technical Symposium on Computer Science Education
- Volume 1 (Providence, RI, USA) (SIGCSE 2022). Association for Computing
Machinery, New York, NY, USA, 787–793. https://doi.org/10.1145/3478431.
3499414

[112] Lev S Vygotsky. 1978. Mind in society: The development of higher mental
processes (E. Rice, Ed. & Trans.).

[113] Lev Semenovich Vygotsky. 1980. Mind in society: The development of higher
psychological processes. Harvard university press, Cambridge, MA.

[114] Nathaniel Weinman, Armando Fox, and Marti Hearst. 2020. Exploring Challeng-
ing Variations of Parsons Problems. Association for Computing Machinery, New
York, NY, USA, 1349. https://doi.org/10.1145/3328778.3372639

[115] Nathaniel Weinman, Armando Fox, and Marti A Hearst. 2021. Improving In-
struction of Programming Patterns with Faded Parsons Problems. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems. Association

for Computing Machinery, New York, NY, USA, 1–4.
[116] Jacqueline L. Whalley and Raymond Lister. 2009. The BRACElet 2009.1 (Welling-

ton) Specification. In Proceedings of the Eleventh Australasian Conference on
Computing Education - Volume 95 (Wellington, New Zealand) (ACE ’09). Aus-
tralian Computer Society, Inc., AUS, 9–18.

[117] Joseph B Wiggins, Joseph F Grafsgaard, Kristy Elizabeth Boyer, Eric N Wiebe,
and James C Lester. 2017. Do you think you can? the influence of student
self-efficacy on the effectiveness of tutorial dialogue for computer science. In-
ternational Journal of Artificial Intelligence in Education 27, 1 (2017), 130–153.

[118] Zihan Wu, Barbara J. Ericson, and Christopher Brooks. 2023. Using Micro Par-
sons Problems to Scaffold the Learning of Regular Expressions. In Proceedings of
the 2023 Conference on Innovation and Technology in Computer Science Education.
ACM, New York, NY, 457–463.

[119] Mark Zarb, Bedour Alshaigy, Dennis Bouvier, Richard Glassey, Janet Hughes,
and Charles Riedesel. 2018. An International Investigation into Student Con-
cerns Regarding Transition into Higher Education Computing. In Proceedings
Companion of the 23rd Annual ACM Conference on Innovation and Technol-
ogy in Computer Science Education (Larnaca, Cyprus) (ITiCSE 2018 Compan-
ion). Association for Computing Machinery, New York, NY, USA, 107–129.
https://doi.org/10.1145/3293881.3295780

[120] Angela Zavaleta Bernuy and Brian Harrington. 2020. What Are We Asking Our
Students? A Literature Map of Student Surveys in Computer Science Education.
In Proceedings of the 2020 Conference on Innovation and Technology in Computer
Science Education (Trondheim, Norway) (ITiCSE ’20). Association for Computing
Machinery, New York, NY, USA, 418–424. https://doi.org/10.1145/3341525.
3387383

[121] Rui Zhi, Min Chi, Tiffany Barnes, and Thomas W Price. 2019. Evaluating the
effectiveness of parsons problems for block-based programming. In Proceedings
of the 2019 ACM Conference on International Computing Education Research.
Association for Computing Machinery, New York, NY, USA, 51–59.

[122] Xinming Zhu and Herbert A Simon. 1987. Learning mathematics from examples
and by doing. Cognition and instruction 4, 3 (1987), 137–166.

[123] Athanasios Zitouniatis, Fotis Lazarinis, and Dimitris Kanellopoulos. 2022. Teach-
ing Computational Thinking Using Scenario-Based Learning Tools. Education
and Information Technologies 28, 4 (oct 2022), 4017–4040.

51

https://doi.org/10.1145/3170358.3170385
https://doi.org/10.1145/3170358.3170385
https://doi.org/10.1145/2543882.2543884
https://doi.org/10.1145/3478431.3499414
https://doi.org/10.1145/3478431.3499414
https://doi.org/10.1145/3328778.3372639
https://doi.org/10.1145/3293881.3295780
https://doi.org/10.1145/3341525.3387383
https://doi.org/10.1145/3341525.3387383

A LEARNING CONTEXTS AND TASKS
This appendix provides additional detail on the tasks associated with each study.

A.1 Pretest
The optional pretest, which can be run as timed or untimed, is designed to assess the student’s level of knowledge of the subject matter.

Figure 26: First 5 questions from 10-question multiple-choice pretest

52

Figure 27: Last 6 questions from 10-question multiple-choice pretest

53

Figure 28: Pretest final feedback question

54

A.2 Introduction to Problem Types
All of the studies included a primer on how to use the interface, which also served to introduce the problem types and help students
familiarise themselves with Parson’s problems.

Figure 29: Introduction to problem types - Students familiarise themselves with the drag and drop interface for Parsons
problems

Figure 30: Introduction to problem types - Students are introduced to indentation in Parsons problems

55

Figure 31: Introduction to problem types - Students practice parsons problems with distractor blocks i.e. blocks that are not
needed in a correct solution

Figure 32: Introduction to problem types - Students practice writing code with unit tests

56

A.3 python-swap
Students are tasked with swapping the value of one variable with the value of another variable.

Figure 33: python-swap - Students reorganise comment blocks which contain the logic of the algorithm for swapping the values
of two variables

57

Figure 34: python-swap - Students practice combining the code with comments blocks to teach the logic of the process

Figure 35: python-swap - Students are tasked with a Parsons problem to swap the values of two variables

58

Figure 36: python-swap - After completing the Parson’s problem exercise, students proceed to write a solution using code

Figure 37: python-swap - A similar code-writing task with different variable names for near transfer

59

A.4 p3pt
Students are tasked with defining functions in Python that solve defined problems.

Figure 38: p3pt - Defining a function which extracts the middle characters from a string (Parsons)

60

Figure 39: p3pt - Defining a function that concatenates two lists according to requirements (Parsons)

61

Figure 40: p3pt - Defining a function to search a list for adjacent values of two (Parsons)

62

Figure 41: p3pt - Defining a function to sum a list of numbers excluding any element that follows the value of 13 (Parsons)

63

Figure 42: p3pt - Defining a function which extracts the middle characters from a string (code writing)

64

Figure 43: p3pt - Defining a function that combines two lists according to requirements (code writing)

65

Figure 44: p3pt - Defining a function to search a list for adjacent values of two (code writing)

66

Figure 45: p3pt - Defining a function to sum a list of numbers excluding any element that follows the value of 13 (code writing)

67

Figure 46: p3pt - Posttest based on manipulating and returning a substring

68

Figure 47: p3pt - Posttest based on determining whether a list is in descending order

69

Figure 48: p3pt - Posttest based on conditional summation

70

Figure 49: p3pt - Posttest based on combining two lists

71

A.5 Introduction to Classes
The classexp and classtog studies involved object-orientated concepts and programming constructs. Brief instruction on how to define classes
are provided as part of these respective studies.

Figure 50: Introduction to classes - Instructions on how to create a class

72

Figure 51: Introduction to classes - worked example

73

A.6 class-exp
Students are tasked with creating classes. One arrangement of the learning materials uses distractors while the other does not.

Figure 52: class-exp - Define a song class with name and duration attributes

Figure 53: class-exp - Define a cat class with name and age attributes and a method for making sound

74

Figure 54: class-exp - Define a book class with title and length attributes and a string-conversion method

Figure 55: class-exp - Define a bank account class with identifier and balance attributes and a deposit method

75

Figure 56: class-exp - Define a fortune teller class which randomly selects a fortune from a predefined list

76

Figure 57: class-exp - Define a song class with name and duration attributes (with distractors)

77

Figure 58: class-exp Define a cat class with name and age attributes and a method for making sound (with distractors)

78

Figure 59: class-exp- Define a book class with title and length attributes and with a string-conversion method (with distractors)

79

Figure 60: class-exp - Define a bank account class with identifier and balance attributes and a deposit method (with distractors)

80

Figure 61: class-exp - Define a fortune teller class which randomly selects a fortune from a predefined list class-exp (with
distractors)

81

Figure 62: class-exp - Posttest task for defining a movie class

82

Figure 63: class-exp - Posttest task for defining a rectangle class with a string-conversion method

83

Figure 64: class-exp - Posttest task for defining a horse class and a method for making sound

84

Figure 65: class-exp - Posttest task for defining a gas tank class and a method to add gas

85

Figure 66: class-exp - Posttest task for defining a dice class with a given number of sides and a roll method

86

A.7 class-tog
Similar to the previous activity, students are tasked with defining classes, with the same practice and post-test items. However, in this study,
students are able to switch freely between a Parsons problem and code using a drop-down menu throughout the practice activities.

Figure 67: Students have the ability to toggle between code and a Parsons problem

87

Figure 68: class-tog - Define a song class with name and duration attributes

Figure 69: class-tog - Define a cat class with name and age attributes and with a method for making sound

88

Figure 70: class-tog - Define a book class with title and length attributes and a string-conversion method

Figure 71: class-tog - Define a bank account class with identifier and balance attributes and a deposit method

89

Figure 72: class-tog - Define a fortune teller class which randomly selects a fortune from a predefined list (with distractors)

90

Figure 73: class-tog - Post-postest task for defining a movie class

91

Figure 74: class-tog - Post-posttest task for defining a rectangle class and string-conversion method

92

Figure 75: class-tog - Post-posttest task for defining a horse class and a method for making sound

93

Figure 76: class-tog - Posttest task for defining a gas tank class and a method for adding gas

94

Figure 77: class-tog - Posttest task for defining a dice class with a given number of sides and a roll method

95

A.8 p3dnd
The p3dnd study is similar to p3pt but is intended to have harder practice and posttest problems. The two conditions are Parsons problems
with and without distractors.

Figure 78: p3dnd - return a character based on what is at the beginning and end of a string (with distractors)

96

Figure 79: p3dnd - return true if a string contains "b*b" where ’*’ can be any character (with distractors)

97

Figure 80: p3dnd - return the sum of a list of numbers, but ignore 13 and any number after a 13 (with distractors)

98

Figure 81: p3dnd - returns the indices of two numbers in a list that add up to a passed target value (with distractors)

99

Figure 82: p3dnd - return true if every two in a list of numbers is next to another two (with distractors)

100

Figure 83: p3dnd - returns true if the digits in a number are a palindrome (with distractors)

101

Figure 84: p3dnd - return a character based on what is at the beginning and end of a string

102

Figure 85: p3dnd - return true if a string contains “b*b” where “*” can be any character

103

Figure 86: p3dnd - return a sum of a list of numbers, but ignore 13 and any number after a 13

104

Figure 87: p3dnd - returns the indices of two numbers in a list that add up to a passed target value

105

Figure 88: p3dnd - return true if every two in a list of numbers is next to another two

106

Figure 89: p3dnd - returns true if the digits in a number are a palindrome

107

Figure 90: p3dnd - return a string with the center characters in uppercase or just the string if the length is less than 3

108

Figure 91: p3dnd - return true if the numbers in a list are sorted in descending order

109

Figure 92: p3dnd - returns the total of all numbers in a list except those inclusively between a 6 and 7

110

	Abstract
	1 Introduction
	1.1 Related Theories

	2 Parsons' Literature Review
	3 MIMN Literature Review
	3.1 MIMN Study Design
	3.2 MIMN Results
	3.3 Early Influential MIMN Studies in CSE
	3.4 MIMN Studies in CSE (2013-2023)
	3.5 Considerations from Previous MIMN Studies

	4 2023 Working Group Parsons Problem Studies
	4.1 Study Information Page
	4.2 Presurvey
	4.3 Introduction to Problem Types
	4.4 Optional Pretest
	4.5 Optional Postsurvey
	4.6 Study Details

	5 2023 Working Group Study Contexts
	5.1 Ashesi University in Ghana
	5.2 Berea College in the USA
	5.3 Duke University in the USA
	5.4 Falmouth University in Cornwall, UK
	5.5 Indian Institute of Technology Madras, India
	5.6 Victoria University of Wellington in New Zealand
	5.7 University of Chile in Chile
	5.8 University of Illinois at Urbana-Champaign in the USA
	5.9 University of Michigan in the USA
	5.10 University of Toronto in Canada
	5.11 University of Strathclyde in Scotland

	6 results
	6.1 Think Aloud Observations
	6.2 Quantitative Experimental Studies

	7 Discussion
	7.1 Parsons Problems Recent Directions
	7.2 Addressing Considerations for MIMN Studies
	7.3 Discussion of Study Results

	8 Limitations
	9 Conclusion
	10 Acknowledgements
	References
	A Learning Contexts and Tasks
	A.1 Pretest
	A.2 Introduction to Problem Types
	A.3 python-swap
	A.4 p3pt
	A.5 Introduction to Classes
	A.6 class-exp
	A.7 class-tog
	A.8 p3dnd

